Background: Piperine is a natural compound obtained from the Piper nigrum that exhibits anti-proliferative and anti-cancer activity in cancer cell lines. We analyzed the cytotoxic effect of piperine combined with cisplatin compound in the human MCF-7 breast cancer cell line and the underlying mechanism. Methods: The present in vitro study was performed on MCF-7 cell line in Jahrom University of Medical Sciences between, Jahrom, Iran from 2016 to 2017. Cultured MCF-7 cells were seeded into four groups: a control group (untreated group), a group treated with cisplatin, a group treated with piperine and a group treated with cisplatin and piperine. Cell viability was analyzed using the MTT assay method. Flow c-ytometric analysis was investigated for apoptosis. The mRNA and protein expression of the apoptotic regulators p53, Bcl-2, Bax, caspase 3 and caspase 9 were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting analysis. Results: Piperine (20 and 30 µM) in combination with cisplatin (5, 10 and 15 µM) for 24 h synergistically inhibited cell viability of MCF-7 breast cancer cells more than piperine and cisplatin used alone. Synergistic antibreast cancer activities cisplatin (5 µM) and piperine (20 µM) were via inducing apoptosis. Piperine (20 µM) and cisplatin (5 µM) for 24 h induce apoptosis strongly through reduction of Bcl-2 and increase of caspase 3, p53, caspase 9, and Bax. Conclusion: Piperine in combination with cisplatin could trigger p53-mediated apoptosis more effective than cisplatin alone in MCF-7 breast cancer cells, reducing the toxic dose of cisplatin used in cancer chemotherapy.
Background: Parkinson's disease (PD) is a prevalent neurodegenerative disorder. Oxidative stress is a main modulator in the advancement of PD. This investigation aimed to evaluate the relations between serum trace elements, vitamin C, ferritin, transferrin, Nitrite Oxide (NOx) and Peroxynitrite (PrN) concentrations and clinical parameters in patients with PD. Methods: Serum concentrations of variables were measured in 75 PD patients and 75 healthy subjects from Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran between Feb 2016 and Sep 2018. Receiver Operating Characteristic (ROC) analysis was performed to examine incremental diagnostic value of vitamin C, NOx, and PrN in the study groups. Results: Mean serum NOx (35.81±5.16 vs. 11.27±3.59 mol/L, P<0.001) and PrN (15.78±4.23 vs. 9.62±4.57 mol/L, P= 0.004) were markedly higher in patient group versus healthy individuals. Significant differences were also observed in the serum levels of vitamin C (P<0.001), copper (Cu) (P<0.001), Iron (Fe) (P=0.003), and Zinc (Zn) (P<0.001) between patients with PD and healthy subjects. Nevertheless, the serum levels of Se (P=0.515), ferritin (P=0.103), and transferrin (P=0.372) were not statistically significant between the study groups. ROC analysis has revealed a diagnostic ability of serum vitamin C levels for PD with an area under ROC curve of ≥0.7 (P<0.05) and relatively high sensitivity and specificity. Conclusion: Serum levels of NOx and PrN are significantly higher in patients with PD. In additions, serum vitamin C levels have a diagnostic value as a biomarker. Further studies are required with larger sample size to provide more detailed information about the cognitive profile of participants and the outcome measures.
Blood and its products, in some cases, are the only vital and sanative medicine for the patients. Each donated blood unit is a valuable asset to protect the patients’ lives, and it should be avoided waste and non-optimal consumption. The assignment of blood and its products to hospitals is one of assignment problems, in which finding the optimal solution can lead to a reduction in mortality and waste of expenditure. In this research, a new model for the assignment of blood products in a stochastic environment is presented. The goal of the model is to minimize the preparation, deficiency and waste cost of blood products, while considering the constraints of the problem. The stochastic model is implemented in a real case and is solved by the Monte Carlo simulation method. Then, a random model is settled in a real problem in Yazd city and it is solved via a Monte Carlo based Particle Swarm Optimization algorithm. The results reveal that the solution of the hybrid algorithm can significantly reduce the costs of preparation, deficiency and waste of blood products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.