SUR LE RANG DU 2-GROUPE DE CLASSES DEABDELMALEK AZIZI AND ALI MOUHIB Abstract. On the rank of the 2-class group of Q(Let d be a square-free positive integer and p be a prime such that p ≡ 1 (mod 4). We, where m = 2 or m = p. In this paper, we determine the rank of the 2-class group of K., un corps biquadratique où m = 2 ou bien un premier p ≡ 1 (mod 4) et détant un entier positif sans facteurs carrés. Dans ce papier, on détermine le rang du 2-groupe de classes de K.
Capitulation des 2-classes d'idéaux de Q(√ 2, √ d) où d est un entier naturel sans facteurs carrés par Abdelmalek Azizi et Ali Mouhib (Oujda) 1. Introduction. Soient K un corps de nombres, K (1) le corps de classes de Hilbert de K, p un nombre premier et K
International audienceFor a number field k and a prime number p, let k∞ be the cyclotomic Zp-extension of k with finite layers kn. We study the finiteness of the Galois group X∞ over k∞ of the maximal abelian unramified p-extension of k∞ when it is assumed to be cyclic. We then focus our attention to the case where p = 2 and k is a real quadratic field and give the rank of the 2-primary part of the class group of kn. As a consequence, we determine the complete list of real quadratic number fields for which X∞ is cyclic non trivial. We then apply these results to the study of Greenberg's conjecture for infinite families of real quadratic fields thus generalizing previous results obtained by Ozaki and Taya
Let K be a real biquadratic field and let k be a quadratic field with odd class number contained in K. The aim of this article is to determine the rank of the 2-class group of K and we give applications to the structure of the 2-class group of some biquadratic fields and to the 2-class field tower of some real quadratic fields. Résumé: Soient K un corps biquadratique réel et k un sous-corps quadratique de K dont le nombre de classes est impair. Dans ce papier on détermine le rang du 2-groupe de classes de K et on donne des applications à la structure du 2-groupe de classes de certains corps biquadratiques et aussi à la tour des 2-corps de classes de Hilbert de certains corps quadratiques réels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.