A detailed investigation of the influence of quartz tuning forks (QTFs) resonance properties on the performance of quartz-enhanced photoacoustic spectroscopy (QEPAS) exploiting QTFs as acousto-electric transducers is reported. The performance of two commercial QTFs with the same resonance frequency (32.7 KHz) but different geometries and two custom QTFs with lower resonance frequencies (2.9 KHz and 7.2 KHz) were compared and discussed. The results demonstrated that the fundamental resonance frequency as well as the quality factor and the electrical resistance were strongly inter-dependent on the QTF prongs geometry. Even if the resonance frequency was reduced, the quality factor must be kept as high as possible and the electrical resistance as low as possible in order to guarantee high QEPAS performance.
We introduce the first two-way coupled model for the thermo-viscous damping of a mechanical structure (such as quartz tuning fork) that is forced by the weak acoustic and thermal waves generated when a laser source periodically interacts with a trace gas. The model is based on a Helmholtz system of thermo-visco-acoustic equations in the fluid, together with a system of equations for the temperature and the displacement of the structure. These two subsystems are coupled across the fluid-structure interface via several conditions. With this model, the user specifies the geometry of the structure and the viscous and thermal parameters of the fluid, and the model outputs an effective damping parameter and a signal strength that is proportional to the concentration of the trace gas. This new model is a significant improvement over existing one-way coupled models in which damping effects are incorporated via a priori laboratory measurements. Analytical solutions derived for an annular structure show reasonable agreement between the one-way and two-way coupled models at higher ambient pressures. However, at low ambient pressure the one-way coupled model does not adequately capture thermo-viscous effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.