Simple SummaryAnti-stress is an emergent research point to current cattle industry. Land transport stress, a negative off-site fattening mode, causing a serious problems to beef cattle production, such as nutrition-metabolism, hormone secretion levels, and immune competence are imbalanced. In this paper we compared among Simmental Crossbred Cattle (SC), Native Yellow Cattle (NY), and Cattle Yak (CY) about ruminal microbe diversity and immune functions before and after transportation. The results showing that transport stress leads to increase secretion of hormone, both pro-inflammatory cytokines and rumen lipopolysaccharide. Meanwhile, the ruminal microbiota OTUs, Chao1, and Shannon were also changed, and Prevotella1 in NY group was higher than other groups before transport; after transport Firmicutes and Lactobacillus were increased than other groups in CY. The rumen microbiota also related with serum cytokine. Under transport stress, rumen microbiota affect the secretion of hormone levels and immune functions and breed factors affect the performance of stress resistance.AbstractThe intensity and specialization of beef cattle production make off-site fattening, and introduce new breeds need transportation to achieve the goals. The present study was aimed to investigate effects of land transport stress on hormones levels, microbial fermentation, microbial composition, immunity and correlation among them among Simmental Crossbred Cattle (SC), Native Yellow Cattle (NY), and Cattle Yak (CY). High-throughput sequencing was used to investigate the rumen microbial diversity. After transport stress cortisol (COR), adrenocorticotropic hormone (ACTH) and pro-inflammatory cytokines IL-6, TNF-α, and IL-1β were increased (p < 0.05) in all groups. Rumen lipopolysaccharide (LPS) was increased (p < 0.05) in SC and CY groups. Total volatile fatty acids were increased (p < 0.05) in all groups. The ruminal microbiota about OTUs, Chao1, and Shannon in SC and CY groups were higher than before transport. Prevotella1 in NY group was higher (p < 0.05) than other groups before transport; after transport Firmicutes and Lactobacillus were increased (p < 0.05) than other groups in CY. Lactobacillus was positively correlated with IL-6 and IL-4. Under transport stress, cattle may suffer from inflammatory response through modulating HPA axis and microbiota metabolite affects the secretion of hormone levels and immune function and breeds factor affect the performance of stress resistance.
In ruminants, the bacterial community in the gastrointestinal tract (GIT) has an essential role in healthy growth. Examining the bacterial composition in the GIT between growth-retarded and normal yaks could improve our understanding of the role of microorganisms in yaks with growth retardation. In this study, eight male yaks with growth retardation were used as the growth-retarded yak (GRY) group, and another eight male growth normal yaks (GNYs) with the same breed and age were used as the GNY group. We compared the bacterial community in the rumen, duodenum, jejunum, ileum, cecum, and colon between GRY and GNY groups based on the 16S ribosomal RNA gene sequencing. Alpha-diversity revealed that the Shannon index in the duodenum and ileum of the GNY group was higher (P < 0.05) than that of the GRY group. However, the opposite trend was found in the jejunum and cecum. The principal coordinates analysis (PCoA) showed that the bacterial structure in all segments of GIT differed from each other between two groups. In the rumen, the relative abundances of Ruminococcaceae NK4A214 group, Ruminococcaceae UCG-014, and Treponema 2 were higher (P < 0.05) in the GNY group as compared with the GRY group. However, the Christensenellaceae R-7 group exhibited an opposite trend. In the jejunum, compared with the GNY group, the unclassified Chitinophagaceae was enriched significantly (P < 0.05) in the GRY group. However, the unclassified Peptostreptococcaceae, Christensenellaceae R-7 group, and Lachnospiraceae NK3A20 group were enriched (P < 0.05) in the GNY group. In the ileum, the relative abundances of the Rikenellaceae RC9 gut group and Prevotellaceae UCG-004 were higher (P < 0.05) in the GNY group than those in the GRY group. In the cecum, the GNY group showed a higher (P < 0.05) relative abundance of Prevotellaceae UCG-003 as compared with the GRY group. In the colon, the relative abundances of Treponema 2 and unclassified Lachnospiraceae were slightly higher (0.05 < P < 0.10) in the GNY group than those in the GRY group. Overall, these results improve our knowledge about the bacterial composition in the GIT of growth-retarded and normal yaks, and regulating the bacterial community may be an effective solution to promote the compensatory growth of GRYs.
Background This study investigated changes in rumen protozoal and methanogenic communities, along with the correlations among microbial taxa and methane (CH 4 ) production of six Belmont Red Composite beef steers fed tea seed saponins (TSS). Animals were fed in three consecutive feeding periods, a high-grain basal diet for 14 d (BD period) then a period of progressive addition of TSS to the basal diet up to 30 g/d for 20 d (TSS period), followed by the basal diet for 13 d without TSS (BDP post-control period). Results The study found that TSS supplementation decreased the amount of the protozoal genus Entodinium and increased Polyplastron and Eudiplodinium genera. During BDP period, the protozoa community of steers did not return to the protozoal profiles observed in BD period, with higher proportions of Metadinium and Eudiplodinium and lower Isotricha . The addition of TSS was found to change the structure of methanogen community at the sub-genus level by decreasing the abundance of methanogens in the SGMT clade and increasing the abundance of methanogens in the RO clade. The correlation analysis indicated that the abundance of SGMT clade methanogens were positively correlated with Isotricha , and Isotricha genus and SGMT clade methanogens were positively correlated with CH 4 production. While RO clade were positively correlated with the proportion of Metadinium genus, which was negatively correlated with CH 4 emission. Conclusions These results suggest that different genera of rumen protozoa ciliates appear to be selectively inhibited by TSS, and the change in methanogen community at the subgenus level may be due to the mutualistic relationships between methanogens and rumen ciliates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.