Complex problems of the current business world need new approaches and new computational algorithms for solution. Majority of the issues need analysis from different angles, and hence, multi-objective solutions are more widely used. One of the recently well-accepted computational algorithms is Multi-objective Particle Swarm Optimization (MOPSO). This is an easily implemented and high time performance nature-inspired approach; however, the best solutions are not found for archiving, solution updating, and fast convergence problems faced in certain cases. This study investigates the previously proposed solutions for creating diversity in using MOPSO and proposes using random immigrants approach. Application of the proposed solution is tested in four different sets using Generational Distance, Spacing, Error Ratio, and Run Time performance measures. The achieved results are statistically tested against mutation-based diversity for all four performance metrics. Advantages of this new approach will support the metaheuristic researchers.
Multidimensional Knapsack problem (MKP) is a well-known, NP-hard combinatorial optimization problem. Several metaheuristics or exact algorithms have been proposed to solve stationary MKP. This study aims to solve this difficult problem with dynamic conditions, testing a new evolutionary algorithm. In the present study, the Partheno-genetic algorithm (PGA) is tested by evolving parameters in time. Originality of the study is based on comparing the performances in static and dynamic conditions. First the effectiveness of the PGA is tested on both the stationary, and the dynamic MKP. Then, the improvements with different random restarting schemes are observed. The PGA achievements are shown in statistical and graphical analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.