The status of the Joint Evaluated Fission and Fusion file (JEFF) is described. The next version of the library, JEFF-3.1, comprises a significant update of actinide evaluations, evaluations emerging from European nuclear data projects, the activation library JEFF-3/A, the decay data and fission yield library, and fusion-related data files from the EFF project. The revisions were motivated by the availability of new measurements, modelling capabilities, or trends from integral experiments. Various pre-release validation efforts are underway, mainly for criticality and shielding of thermal and fast systems. This JEFF-3.1 library is expected to provide improved performances with respect to previous releases for a variety of scientific and industrial applications.
This work considers the problems of learning and planning in Markovian environments with constant observation and reward delays. We provide a hardness result for the general planning problem and positive results for several special cases with deterministic or otherwise constrained dynamics. We present an algorithm, Model Based Simulation, for planning in such environments and use model-based reinforcement learning to extend this approach to the learning setting in both finite and continuous environments. Empirical comparisons show this algorithm holds significant advantages over others for decision making in delayed-observation environments.
Abstract. We introduce the FullMonte tetrahedral 3-D Monte Carlo (MC) software package for simulation, visualization, and analysis of light propagation in heterogeneous turbid media including tissue. It provides the highest computational performance and richest set of input, output, and analysis facilities of any open-source tetrahedral-mesh MC light simulator. It also provides a robust framework for statistical verification. A scripting interface makes set-up of simulation runs simple, including parameter sweeps, while simultaneously providing customization options. Data formats shared with class-leading visualization tools, VTK and Paraview, facilitate interactive generation of publication-quality fluence and irradiance maps. The simulator can read and write file formats supported by other similar simulators, such as TIM-OS, MMC, COMSOL (finite-element simulations), and MCML to support comparison. Where simulator features permit, FullMonte can take a single test case, run it in multiple software packages, and load the results together for comparison. Example meshes, optical properties, set-up scripts, and output files are provided for user convenience. We demonstrate its use in several test cases, including photodynamic therapy of the brain, bioluminescence imaging (BLI) in a mouse phantom, and a comparison against MCML for layered geometries. Application domains that can benefit from use of FullMonte include photodynamic, photothermal, and photobiomodulation therapies, BLI, diffuse optical tomography, MC software development, and biophotonics education. Since MC results may be used for preclinical or even clinical experiments, a robust and rigorous verification process is essential. Being a stochastic numerical method, MC simulation has unique challenges associated with verification of output results since observed differences may be due simply to output variance or actual differences in expected output. We describe and have implemented a rigorous and statistically justified framework for comparing between simulators of the same class and for performing regression testing. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
Abstract. The status of the Joint Evaluated Fission and Fusion file (JEFF) is described. JEFF-3.1 comprises a significant update of actinide evaluations, materials evaluations that have emerged from various European nuclear data projects, the activation library JEFF-3.1/A, the decay data and fission yield sub-libraries, and fusion-related data files from the EFF project. The revisions were motivated by the availability of new measurements, modelling capabilities and trends from integral experiments. Validations have been performed, mainly for criticality, reactivity temperature coefficients, fuel inventory and shielding of thermal and fast systems. Compared with earlier releases, JEFF-3.1 provides improved performance with respect to a variety of scientific and industrial applications. Following on from the public release of JEFF-3.1, the French nuclear power industry has selected this suite of nuclear applications libraries for inclusion in their production codes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.