Siregar A.N., Ghani J.A., Haron C.H.C., Rizal M., Yaakob Z., Kamarudin S.K. (2015): Comparison of oil press for jatropha oil -a review. Res. Agr. Eng., 61: 1-13.As petrol will soon be exhausted in the near future, Jatropha is going to be one of the substitute candidates for future biodiesel production. Countries of South-East Asia, such as Malaysia, they are going to start the establishment of Jatropha plantations assuming that Jatropha will be the main resource for biodiesel production. A press is commonly used to extract oils from Jatropha. An oil press can be manually driven or engine-powered. In this paper, we will review some available advances focused on mechanical extraction techniques, covering three types of press for Jatropha oil extraction. We have found that major points like operating principles, oil extraction levels, advantages and disadvantages of each press and important factors to increase oil recovery. Based on the study, three types of press are: ram press, which is ineffective; strainer press, which is able to produce more oil than others and cylinder-hole press, which is the best due to its capacity in extracting oil from Jatropha seeds for about 89.4% of oil yields.
Abstract. The most commonly used technique to separate oil and cake from J. curcas seeds is mechanical extraction. It uses simple tools such as a piston and a screw extruder to produce high pressure, driven by hand or by engine. A single screw extruder has one screw rotating inside the barrel and materials simultaneously flow from the feed to the die zone. The highest oil yield can be obtained by a well-designed oil press as well as finding the optimum conditions for all parameters involved during the extraction process. The influence of the parameters in a single screw extruder was studied using finite element analysis and computational fluid dynamics simulation with ANSYS POLYFLOW. The research focused on predicting the velocity, pressure and shear rate in the metering section that influenced the screw rotational speed and mass flow rate. The obtained results revealed that increasing the screw rotational speed will increase the pressure, velocity and shear rate. Meanwhile, increasing the mass flow rate results in decreasing the pressure while the velocity and shear rate remain constant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.