The pre- and postnatal environment may represent a window of opportunity for allergy and asthma prevention, and the hygiene hypothesis implies that microbial agents may play an important role in this regard. Using the cowshed-derived bacterium Acinetobacter lwoffii F78 together with a mouse model of experimental allergic airway inflammation, this study investigated the hygiene hypothesis, maternal (prenatal) microbial exposure, and the involvement of Toll-like receptor (TLR) signaling in prenatal protection from asthma. Maternal intranasal exposure to A. lwoffii F78 protected against the development of experimental asthma in the progeny. Maternally, A. lwoffii F78 exposure resulted in a transient increase in lung and serum proinflammatory cytokine production and up-regulation of lung TLR messenger RNA. Conversely, suppression of TLRs was observed in placental tissue. To investigate further, the functional relevance of maternal TLR signaling was tested in TLR2/3/4/7/9−/− knockout mice. The asthma-preventive effect was completely abolished in heterozygous offspring from A. lwoffii F78–treated TLR2/3/4/7/9−/− homozygous mother mice. Furthermore, the mild local and systemic inflammatory response was also absent in these A. lwoffii F78–exposed mothers. These data establish a direct relationship between maternal bacterial exposures, functional maternal TLR signaling, and asthma protection in the progeny.
Decreased WNT/β-catenin signaling is involved in parenchymal tissue destruction and impaired repair capacity in emphysema. These data indicate a crucial role of WNT/β-catenin signaling in lung repair mechanisms in vivo, and highlight WNT/β-catenin activation as a future therapeutic approach for emphysema.
Upon activation, neutrophils release DNA fibers decorated with antimicrobial proteins, forming neutrophil extracellular traps (NETs). Although NETs are bactericidal and contribute to innate host defense, excessive NET formation has been linked to the pathogenesis of autoinflammatory diseases. However, the mechanisms regulating NET formation, particularly during chronic inflammation, are poorly understood. Here we show that the G protein-coupled receptor (GPCR) CXCR2 mediates NET formation. Downstream analyses showed that CXCR2-mediated NET formation was independent of NADPH oxidase and involved Src family kinases. We show the pathophysiological relevance of this mechanism in cystic fibrosis lung disease, characterized by chronic neutrophilic inflammation. We found abundant NETs in airway fluids of individuals with cystic fibrosis and mouse cystic fibrosis lung disease, and NET amounts correlated with impaired obstructive lung function. Pulmonary blockade of CXCR2 by intra-airway delivery of small-molecule antagonists inhibited NET formation and improved lung function in vivo without affecting neutrophil recruitment, proteolytic activity or antibacterial host defense. These studies establish CXCR2 as a receptor mediating NADPH oxidase-independent NET formation and provide evidence that this GPCR pathway is operative and druggable in cystic fibrosis lung disease.
The function of the majority of genes in the mouse and human genomes remains unknown. The mouse ES cell knockout resource provides a basis for characterisation of relationships between gene and phenotype. The EUMODIC consortium developed and validated robust methodologies for broad-based phenotyping of knockouts through a pipeline comprising 20 disease-orientated platforms. We developed novel statistical methods for pipeline design and data analysis aimed at detecting reproducible phenotypes with high power. We acquired phenotype data from 449 mutant alleles, representing 320 unique genes, of which half had no prior functional annotation. We captured data from over 27,000 mice finding that 83% of the mutant lines are phenodeviant, with 65% demonstrating pleiotropy. Surprisingly, we found significant differences in phenotype annotation according to zygosity. Novel phenotypes were uncovered for many genes with unknown function providing a powerful basis for hypothesis generation and further investigation in diverse systems.
In early stages of various pulmonary diseases, such as emphysema and fibrosis, the change in X-ray attenuation is not detectable with absorption-based radiography. To monitor the morphological changes that the alveoli network undergoes in the progression of these diseases, we propose using the dark-field signal, which is related to small-angle scattering in the sample. Combined with the absorption-based image, the dark-field signal enables better discrimination between healthy and emphysematous lung tissue in a mouse model. All measurements have been performed at 36 keV using a monochromatic laser-driven miniature synchrotron X-ray source (Compact Light Source). In this paper we present grating-based dark-field images of emphysematous vs. healthy lung tissue, where the strong dependence of the dark-field signal on mean alveolar size leads to improved diagnosis of emphysema in lung radiographs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.