Crohn's disease (CD) patients have an abnormal increase in intestinal epithelial permeability. The defect in intestinal tight junction (TJ) barrier has been proposed as an important etiologic factor of CD. TNF-alpha increases intestinal TJ permeability. Because TNF-alpha levels are markedly increased in CD, TNF-alpha increase in intestinal TJ permeability could be a contributing factor of intestinal permeability defect in CD. Our purpose was to determine some of the intracellular mechanisms involved in TNF-alpha modulation of intestinal epithelial TJ permeability by using an in vitro intestinal epithelial system consisting of filter-grown Caco-2 monolayers. TNF-alpha produced a concentration- and time-dependent increase in Caco-2 TJ permeability. TNF-alpha-induced increase in Caco-2 TJ permeability correlated with Caco-2 NF-kappa B activation. Inhibition of TNF-alpha-induced NF-kappa B activation by selected NF-kappa B inhibitors, curcumin and triptolide, prevented the increase in Caco-2 TJ permeability, indicating that NF-kappa B activation was required for the TNF-alpha-induced increase in Caco-2 TJ permeability. This increase in Caco-2 TJ permeability was accompanied by down-regulation of zonula occludens (ZO)-1 proteins and alteration in junctional localization of ZO-1 proteins. TNF-alpha modulation of ZO-1 protein expression and junctional localization were also prevented by NF-kappa B inhibitors. TNF-alpha did not induce apoptosis in Caco-2 cells, suggesting that apoptosis was not the mechanism involved in TNF-alpha-induced increase in Caco-2 TJ permeability. These results demonstrate for the first time that TNF-alpha-induced increase in Caco-2 TJ permeability was mediated by NF-kappa B activation. The increase in permeability was associated with NF-kappa B-dependent downregulation of ZO-1 protein expression and alteration in junctional localization.
Multiple steroid receptors (SR) have been proposed to localize to the plasma membrane. Some structural elements for membrane translocation of the estrogen receptor ␣ (ER␣) have been described, but the mechanisms relevant to other steroid receptors are entirely unknown. Here, we identify a highly conserved 9 amino acid motif in the ligand binding domains (E domains) of human/mouse ER␣ and ER, progesterone receptors A and B, and the androgen receptor. Mutation of the phenylalanine or tyrosine at position ؊2, cysteine at position 0, and hydrophobic isoleucine/leucine or leucine/leucine combinations at positions ؉5/6, relative to cysteine, significantly reduced membrane localization, MAP and PI 3-kinase activation, thymidine incorporation into DNA, and cell viability, stimulated by specific SR ligands. The localization sequence mediated palmitoylation of each SR, which facilitated caveolin-1 association, subsequent membrane localization, and steroid signaling. Palmitoylation within the E domain is therefore a crucial modification for membrane translocation and function of classical sex steroid receptors.
Although rapid signaling by estrogen at the plasma membrane is established, it is controversial as to the nature of the receptor protein. Estrogen may bind membrane proteins comparable to classical nuclear estrogen receptors (ERs), but some studies identify nonclassical receptors, such as G protein-coupled receptor (GPR)30. We took several approaches to define membrane-localized estrogen-binding proteins. In endothelial cells (ECs) from ERalpha/ERbeta combined-deleted mice, estradiol (E2) failed to specifically bind, and did not activate cAMP, ERK, or phosphatidyinositol 3-kinase or stimulate DNA synthesis. This is in contrast to wild-type ECs, indicating the lack of any functional estrogen-binding proteins in ERalpha/ERbeta combined-deleted ECs. To directly determine the identity of membrane and nuclear-localized ER, we isolated subcellular receptor pools from MCF7 cells. Putative ER proteins were trypsin digested and subjected to tandem array mass spectrometry. The output analysis identified membrane and nuclear E2-binding proteins as classical human ERalpha. We also determined whether GPR30 plays any role in E2 rapid actions. MCF7 (ER and GPR30 positive) and SKBR-3 (ER negative, GPR30 positive) cells were incubated with E2. Only MCF7 responded with significantly increased signaling. In MCF7, the response to E2 was not different in cells transfected with small interfering RNA to green fluorescent protein or GPR30. In contrast, interfering RNA to ERalpha or ER inhibition prevented rapid signaling and resulting biology in MCF7. In breast cancer and ECs, nuclear and membrane ERs are the same proteins. Furthermore, classical ERs mediate rapid signals induced by E2 in these cells.
Estradiol (E2) rapidly stimulates signal transduction from plasma membrane estrogen receptors (ER) that are G protein-coupled. This is reported to occur through the transactivation of the epidermal growth factor receptor (EGFR) or insulin-like growth factor-1 receptor, similar to other G protein-coupled receptors. Here, we define the signaling events that result in EGFR and ERK activation. E2-stimulated ERK required ER in breast cancer and endothelial cells and was substantially prevented by expression of a dominant negative EGFR or by tyrphostin AG1478, a specific inhibitor for EGFR tyrosine kinase activity. Transactivation/phosphorylation of EGFR by E2 was dependent on the rapid liberation of heparin-binding EGF (HB-EGF) from cultured MCF-7 cells and was blocked by antibodies to this ligand for EGFR. Expression of dominant negative mini-genes for G␣ q and G␣ i blocked E2-induced, EGFR-dependent ERK activation, and G␥ also contributed. G protein activation led to activation of matrix metalloproteinases (MMP)-2 and -9. This resulted from Src-induced MMP activation, implicated using PP2 (Src family kinase inhibitor) or the expression of a dominant negative Src protein. Antisense oligonucleotides to MMP-2 and MMP-9 or ICI 182780 (ER antagonist) each prevented E2-induced HB-EGF liberation and ERK activation. E2 also induced AKT up-regulation in MCF-7 cells and p38 MAP kinase activity in endothelial cells, blocked by an MMP inhibitor, GM6001, and tyrphostin AG1478. Targeting of only the E domain of ER␣ to the plasma membrane resulted in MMP activation and EGFR transactivation. Thus, specific G proteins mediate the ability of E2 to activate MMP-2 and MMP-9 via Src. This leads to HB-EGF transactivation of EGFR and signaling to multiple kinase cascades in several target cells for E2. The E domain is sufficient to enact these events, defining additional details of the important cross-talk between membrane ER and EGFR in breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.