In this study, a vehicle localization technique was employed to determine the required quantities in the identification of battery models by considering the behavior of multiple batteries instead of data from a single battery. In previous studies, a plant (e.g., a battery, motor, super-capacitor, or fuel cell) was identified based on a single piece of data. However, such an approach is disadvantageous in that it neglects the effect of process and measurement noise and assumes that the parameters obtained using data from a single plant are identical for all plants of the same type. First, deterministic parameter estimation (DPE), particle swarm optimization (PSO), and teaching-learning-based optimization (TLBO) were initially applied to estimate the battery model parameters using data from a single battery. Second, a fusion-based approach was used to address the process and measurement noise problems through an adaptive unscented Kalman filter algorithm. With this approach, maximum likelihood estimation was employed to fuse multiple-battery data streams to enable the DPE, PSO, and TLBO to recalculate the model parameters based on filtered and fused quantities. A comparison between the experimental results and model outputs obtained using the aforementioned methods for parameter estimation indicated that the proposed multiple-battery approach enhances the accuracy of several identification methods. In contrast, it requires a high computational effort. INDEX TERMS universal adaptive stabilizer (UAS), particle swarm optimization (PSO), teachinglearning-based optimization (TLBO), unscented Kalman filter (UKF), and maximum likelihood estimation (MLE).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.