The autosomal recessive form of Robinow syndrome (RRS; MIM 268310) is a severe skeletal dysplasia with generalized limb bone shortening, segmental defects of the spine, brachydactyly and a dysmorphic facial appearance. We previously mapped the gene mutated in RRS to chromosome 9q22 (ref. 4), a region that overlaps the locus for autosomal dominant brachydactyly type B (refs 5,6). The recent identification of ROR2, encoding an orphan receptor tyrosine kinase, as the gene mutated in brachydactyly type B (BDB1; ref. 7) and the mesomelic dwarfing in mice homozygous for a lacZ and/or a neo insertion into Ror2 (refs 8,9) made this gene a candidate for RRS. Here we report homozygous missense mutations in both intracellular and extracellular domains of ROR2 in affected individuals from 3 unrelated consanguineous families, and a nonsense mutation that removes the tyrosine kinase domain and all subsequent 3' regions of the gene in 14 patients from 7 families from Oman. The nature of these mutations suggests that RRS is caused by loss of ROR2 activity. The identification of mutations in three distinct domains (containing Frizzled-like, kringle and tyrosine kinase motifs) indicates that these are all essential for ROR2 function.
Autosomal recessive Robinow syndrome (RRS) is a severe skeletal dysplasia with short stature, generalized limb shortening, segmental defects of the spine, brachydactyly, and a dysmorphic facial appearance. The gene encoding receptor orphan receptor tyrosine kinase 2 (ROR2) is located on chromosome 9q22 and homozygous loss-of-function mutations in this gene are responsible for RRS. Moreover, knocking out the mouse Ror2 gene causes mesomelic dwarfism in the homozygous state, with almost identical features to recessive Robinow syndrome. The protein product of this gene is a cell membrane receptor, containing distinct motifs including an immunoglobulin-like (Ig) domain, a Frizzled-like cysteine-rich domain (FRZ or CRD), and a kringle domain (KD) in the extracellular region; and an intracellular region with tyrosine kinase (TK), serine/threonine-rich, and proline-rich structures. The extracellular motifs of the ROR2 protein are known to be involved in protein-protein interactions. The tyrosine kinase domain is involved in an as yet uncharacterized signaling pathway. Interestingly, heterozygous mutations in ROR2 have recently been shown to give rise to autosomal dominant brachydactyly type B1 (BDB1). This condition is characterized by terminal deficiency of fingers and toes. A variety of mutations have been reported in ROR2. Here, these genetic defects are compiled and possible genotype-phenotype correlations are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.