Purpose The antiplatelet prodrug clopidogrel is bioactivated by the polymorphic enzyme CYP2C19. Prospective clinical studies demonstrated an association between CYP2C19 loss of function (LoF) variants and an increased risk of thrombotic events under clopidogrel, but pharmacogenetic (PGx) testing is not frequently implemented in clinical practice. We report our experience with PGx-guided clopidogrel therapy with particular regard to clinically relevant patient management changes. Methods We conducted an observational study analyzing patients that underwent PGx testing for clopidogrel therapy at two Swiss hospitals. Primary outcome was the proportion of patients with clinically relevant PGx-based management recommendations and their implementation. The association of recurrent ischemic events under clopidogrel with CYP2C19 LoF variants and other factors was explored in a multivariate case-control analysis. Results Among 56 patients undergoing PGx testing, 18 (32.1%) were classified as CYP2C19 intermediate or poor metabolizers. This resulted in 17 recommendations for a change of antiplatelet therapy, which were implemented in 12 patients (70.1%). In the remaining five patients, specific reasons for non-implementation could be identified. Recurrent ischemic events under clopidogrel were associated with LoF variants (OR 2.2, 95% CI 0.3–14.4) and several cardiovascular risk factors. Associations were not statistically significant in our small study, but plausible and in line with estimates from large prospective studies. Conclusion PGx-guided clopidogrel therapy can identify patients with an elevated risk of ischemic events and offer evidence-based alternative treatments. Successful implementation in clinical practice requires a personalized interdisciplinary service that evaluates indications and additional risk factors, provides specific recommendations, and proactively follows their implementation.
There is a growing number of evidence-based indications for pharmacogenetic (PGx) testing. We aimed to evaluate clinical relevance of a 16-gene panel test for PGx-guided pharmacotherapy. In an observational cohort study, we included subjects tested with a PGx panel for variants of ABCB1, COMT, CYP1A2, CYP2B6, CYP3A4, CYP3A5, CYP2C9, CYP2C19, CYP2D6, CYP4F2, DPYD, OPRM1, POR, SLCO1B1, TPMT and VKORC1. PGx-guided pharmacotherapy management was supported by the PGx expert system SONOGEN XP. The primary study outcome was PGx-based changes and recommendations regarding current and potential future medication. PGx-testing was triggered by specific drug–gene pairs in 102 subjects, and by screening in 33. Based on PharmGKB expert guidelines we identified at least one “actionable” variant in all 135 (100%) tested patients. Drugs that triggered PGx-testing were clopidogrel in 60, tamoxifen in 15, polypsychopharmacotherapy in 9, opioids in 7, and other in 11 patients. Among those, PGx variants resulted in clinical recommendations to change PGx-triggering drugs in 33 (32.4%), and other current pharmacotherapy in 23 (22.5%). Additional costs of panel vs. single gene tests are moderate, and the efficiency of PGx panel testing challenges traditional cost-benefit calculations for single drug–gene pairs. However, PGx-guided pharmacotherapy requires specialized expert consultations with interdisciplinary collaborations.
Background and Purpose: There is an increasing number of evidence-based indications for pharmacogenetic (PGx) tests and a growing demand for PGx screening. We aimed to evaluate clinical relevance of a 16-gene panel test for PGx-guided pharmacotherapy. Experimental Approach: Observational cohort study of subjects tested with a PGx panel for variants of ABCB1, COMT, CYP1A2, CYP2B6, CYP3A4, CYP3A5, CYP2C9, CYP2C19, CYP2D6, CYP4F2, DPYD, OPRM1, POR, SLCO1B1, TPMT and VKORC1. Specialized clinical pharmacology consultations with PGx-guided pharmacotherapy management were supported by the PGx expert system SONOGEN XP. Study outcomes were PGx-based changes and recommendations regarding current and potential future medication. Key Results: PGx-testing was triggered by specific drug-gene pairs in 102 subjects, whereas screening was performed in 33. Based on PHARMGKB expert guidelines the 16-gene panel identified at least one “actionable” variant relevant for current or potential future medication in all 135 (100%) tested patients. Drugs that triggered PGx-testing were clopidogrel in 60, tamoxifen in 15, polypsychopharmacotherapy in 9, opioids in 7, and other in 11 patients. Among those, PGx variants resulted in clinical recommendations to change PGx-triggering drugs in 33 (32.4 %), and other current pharmacotherapy in 23 (22.5%). Conclusion and Implications: The 16-gene PGx panel detected clinically relevant variants in a high proportion of tested patients, and SONOGEN XP supported their interpretation based on latest evidence. Additional costs of panel vs. single gene tests are moderate, and the efficiency of PGx panel testing challenges traditional cost-benefit calculations for single drug-gene pairs. However, PGx-guided pharmacotherapy requires specialized consultations with interdisciplinary collaborations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.