Background Ubiquitously expressed CTCF is involved in numerous cellular functions, such as organizing chromatin into TAD structures. In contrast, its paralog, CTCFL, is normally only present in the testis. However, it is also aberrantly expressed in many cancers. While it is known that shared and unique zinc finger sequences in CTCF and CTCFL enable CTCFL to bind competitively to a subset of CTCF binding sites as well as its own unique locations, the impact of CTCFL on chromosome organization and gene expression has not been comprehensively analyzed in the context of CTCF function. Using an inducible complementation system, we analyze the impact of expressing CTCFL and CTCF-CTCFL chimeric proteins in the presence or absence of endogenous CTCF to clarify the relative and combined contribution of CTCF and CTCFL to chromosome organization and transcription. Results We demonstrate that the N terminus of CTCF interacts with cohesin which explains the requirement for convergent CTCF binding sites in loop formation. By analyzing CTCF and CTCFL binding in tandem, we identify phenotypically distinct sites with respect to motifs, targeting to promoter/intronic intergenic regions and chromatin folding. Finally, we reveal that the N, C, and zinc finger terminal domains play unique roles in targeting each paralog to distinct binding sites to regulate transcription, chromatin looping, and insulation. Conclusion This study clarifies the unique and combined contribution of CTCF and CTCFL to chromosome organization and transcription, with direct implications for understanding how their co-expression deregulates transcription in cancer.
During embryo implantation, crosstalk between the endometrial epithelium and the blastocyst, especially the trophoblasts, is a prerequisite for successful implantation. During this crosstalk, various molecular and functional changes occur to promote synchrony between the embryo and the endometrium as well as the uterine cavity microenvironment. In the past few years, growing evidence has shown that endometrium-derived exosomes play pivotal roles in the embryonic-maternal crosstalk during implantation, although the exact mechanism of this crosstalk has yet to be determined. The presence of metalloproteinases has been reported in endometrium-derived exosomes, implying the importance of these enzymes in exosome-based crosstalk. Thus, in this review, we describe the potential roles of the metalloproteinases of endometrium-derived exosomes in promoting embryo attachment and implantation. This study could provide a better understanding of the potential roles of exosomal metalloproteinases in embryo implantation and pave the way for developing novel exosome-based regulatory agents to support early pregnancy.
Different strategies are applied for cellular cross-talk and organization in multicellular organisms. Exosomes are a homogenous population of biological nanoparticles (30-100 nm), originated from multivesicular bodies. The exosomes (Exos) could regulate and affect both cellular physiology and pathophysiology in various organs, such as the female reproductive tract, by altering gene pathways and/or epigenetic programming. Besides, engineered Exos have the potential to be used as a novel drug and gene delivery tools. Here in this review, we discussed various aspects of exosome-based intercellular communication in female reproductive microenvironments. Furthermore, we addressed the findings and issues related to Exos in reproductive biology to give a better view of the involved molecular mechanisms. Moreover, clinical applications of the Exos and their isolation source/methods have been considered to throw some light on the progression of new biological, diagnostic, and therapeutic approaches in clinical embryology. K E Y W O R D S cell communication, embryology, exosome, female reproduction
Introduction Adrenomedullin 2 (ADM2) and vascular endothelial growth factor (VEGF) affect ovarian function, especially angiogenesis and follicular development. The actions of VEGF can be antagonized by its soluble receptors, soluble Fms-like tyrosine kinase-1 (sFlt-1) and soluble VEGF receptor 2 (sVEGFR-2), as they decrease its free form. In the present study, we evaluated the relationship between follicular fluid (FF) levels of AMD2, VEGF and its soluble receptors, and ICSI outcomes. Materials and Methods ICSI cycle outcomes were evaluated and FF levels of VEGF, sFlt-1, sVEGFR-2 and ADM2 were determined using ELISA kits. Results FF levels of ADM2, VEGF, and sVEGFR-2 were significantly higher in non-responders compared to other ovarian response groups (p < 0.05). There were significant correlations between ADM2, VEGF and sVEGFR-2 levels as well as VEGF/sFlt-1 and VEGF/sVEGFR-2 ratios (r = 0.586, 0.482, 0.260, and − 0.366, respectively). Based on the ROC curve, the cutoff value for ADM2 as a non-responder predictor was 348.55 (pg/ml) with a sensitivity of 67.7% and a specificity of 94.6%. Conclusions For the first time we measured FF ADM2 levels to determine the relationship to VEGF and its soluble receptors. We suggest that ADM2 could be a potential predictive marker for non-responders. Although the exact function of ADM2 in ovarian angiogenesis is not yet understood, our study may shed light on the possible role of ADM2 in folliculogenesis and ovulation.
Following publication of the original paper [1], the authors reported an error in the acknowledgements section. The updated acknowledgements section is given below and the changes have been highlighted in bold typeface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.