Cascaded multilevel inverters (MLIs) generate an output voltage using series-connected power modules that employ standard configurations of low-voltage components. Each module may employ one or more switched capacitors to double or quadruple its input voltage. The higher number of switched capacitors and semiconductor switches in MLIs compared to conventional two-level inverters has led to concerns about overall system reliability. A fault-tolerant design can mitigate this reliability issue. If one part of the system fails, the MLI can continue its planned operation at a reduced level rather than the entire system failing, which makes the fault tolerance of the MLI particularly important. In this paper, a novel fault location technique is presented that leads to a significant reduction in fault location detection time based on the reliability priority of the components of the proposed fault-tolerant switched capacitor cascaded MLI (CSCMLI). The main contribution of this paper is to reduce the number of MLI switches under fault conditions while operating at lower levels. The fault-tolerant inverter requires fewer switches at higher reliability, and the comparison with similar MLIs shows a faster dynamic response of fault detection and reduced fault location detection time. The experimental results confirm the effectiveness of the presented methods applied in the CSCMLI. Also, all experimental data including processor code, schematic, PCB, and video of CSCMLI operation are attached.
The reliability of DC-link capacitor-banks (CBs) encounters many challenges due to their usage in electric vehicles. Heavy shocks may damage the internal capacitors without shutting down the CB. The fundamental development obstacles of CBs are: lack of considering capacitor degradation in reliability assessment, the impact of unforeseen sudden internal capacitor faults in forecasting CB lifetime, and the faults consequence on CB degradation. The sudden faults change the CB capacitance, which leads to reliability change. To more accurately estimate the reliability, the type of the fault needs to be detected for predicting the correct post-fault capacitance. To address these practical problems, a new CB model and reliability assessment formula covering all fault types are first presented, then, a new analog fault-detection method is presented, and a combination of online-learning long short-term memory (LSTM) and faultdetection method is subsequently performed, which adapt the sudden internal CB faults with the LSTM to correctly predict the CB degradation. To confirm the correct LSTM operation, four capacitors degradation is practically recorded for 2000-hours, and the off-line faultless degradation values predicted by the LSTM are compared with the actual data. The experimental findings validate the applicability of the proposed method. All experimental codes-data are attached.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.