In arid and semi-arid regions, planting drought-tolerant species is the most useful strategy in the reclamation of degraded soils. In the present study, we evaluated the effect of simulated drought by polyethylene glycol (PEG-6000) on seed germination and seedling growth of three desert plants such as Atriplex canescens, Salsola kali and Zygophyllum fabago. Seeds were subjected to water stress to drought stress by PEG at five stress levels (0, −1, −4, −8, −12, −14 bars). Germination of Z. fabago was completely inhibited at an osmotic potential of −8, −10 and −12 bars and the germination of A. canescens was inhibited only at −14 bar. In contrast, S. kali responded positively to high levels of stress and our results showed the highest final germination percent (71.75, 54 and 18.25%) under three-drought stress −8, −12 and −14 bars, respectively. In addition, increasing PEG concentration adversely affected the germination rate and seedling vigor index as well as the root and shoot length of species. Under high stress levels, S. kali achieved a higher germination rate and seedling vigor index compared to Z. fabago and A. canescens. Among species, S. kali was the only one able to develop roots and shoots at −14 bar. Therefore, S. kali could be considered as a promising plant for the rehabilitation of degraded soils at risk of desertification.
Main Conclusion
The drought conditions and the application of ABA reduce the photosynthetic activity, and the processes related to the transpiration of Dracocephalum moldavica L. At the same time, the plant increases the production of phenolic compounds and essential oil as a response to stress conditions.
Abstract
In the semi-arid regions, drought stress is the most important environmental limitations for crop production. Abscisic acid (ABA) plays a crucial role in the reactions of plants towards environmental stress such as drought. Field experiments for two consecutive years in 2016 and 2017 were conducted to evaluate the effect of three watering regimes (well-watered, moderate and severe drought) and five exogenous ABA concentrations (0, 5, 10, 20 and 40 μM) on growth, photosynthesis, total phenolic and essential oil content of Dracocephalum moldavica L. Without ABA application, the highest photosynthetic rate (6.1 μmol CO2 m−2 s−1) was obtained under well-watered condition and, moderate and severe drought stress decreased photosynthesis rate by 26.39% and 34.43%, respectively. Some growth parameters such as stem height, leaf area, leaf dry weight and biological yield were also reduced by drought stress. ABA application showed a decreasing trend in photosynthesis rate and mentioned plant growth parameters under all moisture regimes. The highest seed yield (1243.56 kg ha−1) was obtained under well-watered condition without ABA application. Increasing ABA concentration decreased seed yield in all moisture regimes. The highest total phenolic content (8.9 mg g−1 FW) and essential oil yield (20.58 kg ha−1) were obtained from 20 and 5 μM ABA concentration, respectively, under moderate drought stress.
The objective of this study was to explore the physical properties of maize seeds in competition with weeds. The basic and complex geometric characteristics of seeds from maize plants, competing with Datura stramonium L. (DS) or Xanthium strumarium (XS) at different weed densities, were studied. It was found that the basic and complex geometric characteristics of maize seeds, such as dimension, aspect ratio, equivalent diameter, sphericity, surface area and volume, were significantly affected by weed competition. The increase in weed density from 0 to 8 plants m2 resulted in an increase in the angle of repose from 27° to 29°, while increasing weed density from 8 to 16 plants m2 caused a diminution of the angle of repose down to 28°. Increasing the density of XS and DS to 16 plants m2 caused a reduction in the maximum 1000 seed weight of maize by 40.3% and 37.4%, respectively. These weed side effects must be considered in the design of industrial equipment for seed cleaning, grading and separation. To our knowledge, this is the first study to consider the effects of weed competition on maize traits, which are important in industrial processing such as seed aeration, sifting and drying.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.