In this paper, we investigate the asymptotic properties of a nonparametric estimator of the relative error regression given a functional explanatory variable, in the case of a scalar censored response, we use the mean squared relative error as a loss function to construct a nonparametric estimator of the regression operator of these functional censored data. We establish the strong almost complete convergence rate and asymptotic normality of these estimators. A simulation study is performed to illustrate and compare the higher predictive performances of our proposed method to those obtained with standard estimators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.