In 1962 H. Fujita (Mathematical Theory of Sedimentation Analysis, Academic Press, New York, pp. 182–192) examined the possibility of transforming a quasi-continuous distribution g(s) of sedimentation coefficient s into a distribution f(M) of molecular weight M for linear polymers using the relation f(M) = g(s).(ds/dM) and showed that this could be done if information about the relation between s and M is available from other sources. Fujita provided the transformation based on the scaling relation s = κM0.5, where κ is taken as a constant for that particular polymer and the exponent 0.5 essentially corresponds to a randomly coiled polymer under ideal conditions. This method was successfully applied to mucus glycoproteins (S.E. Harding, Adv. Carbohyd. Chem. Biochem. 47 (1989), 345–381). We now describe an extension of the method to general conformation types via the scaling relation s = κMb, where b = 0.4–0.5 for a coil, ~0.15–0.2 for a rod and ~0.67 for a sphere. We give examples of distributions f(M) vs M obtained for polysaccharides from SEDFIT derived least squares g(s) vs s profiles (P. Schuck, Biophys. J. 78 (2000) 1606–1619) and the analytical derivative for ds/dM performed with Microcal ORIGIN. We also describe a more direct route from a direct numerical solution of the integral equation describing the molecular weight distribution problem. Both routes give identical distributions although the latter offers the advantage of being incorporated completely within SEDFIT. The method currently assumes that solutions behave ideally: sedimentation velocity has the major advantage over sedimentation equilibrium in that concentrations less than 0.2 mg/ml can be employed, and for many systems non-ideality effects can be reasonably ignored. For large, non-globular polymer systems, diffusive contributions are also likely to be small.
A reliable, high-throughput and sensitive LC-MS/MS procedure was developed and validated for the determination of five tyrosine kinase inhibitors in human plasma. Following their extraction from human plasma, samples were eluted on a RP Luna®-PFP 100 Å column using a mobile phase system composed of acetonitrile and 0.01 m ammonium formate in water (pH ~4.1) with a ratio of (50:50, v/v) flowing at 0.3 mL min . The mass spectrometer was operating with electrospray ionization in the positive ion multiple reaction monitoring mode. The proposed methodology resulted in linear calibration plots with correlation coefficients values of r = 0.9995-0.9999 from concentration ranges of 2.5-100 ng mL for imatinib, 5.0-100 ng mL for sorafenib, tofacitinib and afatinib, and 1.0-100 ng mL for cabozantinib. The procedure was validated in terms of its specificity, limit of detection (0.32-1.71 ng mL ), lower limit of quantification (0.97-5.07 ng mL ), intra- and inter assay accuracy (-3.83 to +2.40%) and precision (<3.37%), matrix effect and recovery and stability. Our results demonstrated that the proposed method is highly reliable for routine quantification of the investigated tyrosine kinase inhibitors in human plasma and can be efficiently applied in the rapid and sensitive analysis of their clinical samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.