Liquid metal assisted cracking (LMAC) and so‐called microcracking are limiting the application of hot‐dip galvanized boron steels in the direct press hardening process. This study addresses the role of steel hardenability on the microcracking behavior of ZnFe‐coated (galvannealed) boron steels 22MnB5 and 22MnMoB8. Several soaking times and forming start temperatures in the range of 800–520 °C are examined using a laboratory press hardening equipment with a hat‐profiled forming tool. The results indicate that the penetration depth of microcracks can be reduced by improving the hardenability of steel, which enables hot forming in austenitic state at exceptionally low temperatures even without accelerated cooling procedures. The austenite decomposition of 22MnB5 leads easily to heterogeneous microstructure (ferrite + austenite/martensite) below the coating/steel interface, which promotes the penetration of microcracks. The crack depth is generally reduced with a conversion‐delayed 22MnMoB8 steel; however, a crucial reduction is attained only at lowest hot forming temperatures of 550 and 520 °C. The results of 22MnMoB8 uncouple the effect of high‐temperature ferrite formation from the microcracking mechanisms and suggest that the embrittling effect from zinc or zinc‐rich intermetallic phases plays a crucial role at conventional hot forming temperatures of 800–600 °C.
The present intention to reach fossil-free steel manufacturing will inevitably result in an increase in the use of steel scrap as a raw material for steel production. Consequently, the amounts of elements, seen as impurities, will increase in steels. This has already been seen in electric arc furnace (EAF) processed steels, where the Cu and Sn levels have doubled in some cases after 1980’s. This may cause problems, as it is well-known, that some impurity elements have harmful effects on the properties of steel. This has been widely studied in low-alloy steels containing chromium and molybdenum which are widely used in components for the petroleum and electrical power generation applications. However, limited number of studies have been performed on formable steel grades, and the published reports/articles have mostly concentrated on the effects of P and B. Thus, there is still a need to understand the roles of other impurity elements. In the present study, a formable C-Mn steels containing additions (either individually or in combination) of Cu and Sn is investigated. The samples were cold rolled and annealed following typical time-temperature profiles of modern continuous annealing lines. Mechanical and forming properties (incl. bending and cupping tests) are determined as well as elemental profile analysis is conducted. The results identify that minor additions of impurity elements, in this case Cu and Sn, does not affect the mechanical and forming properties of low alloyed formable steel grades considerably.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.