Coronaviruses are a famous family of viruses that cause illness in both humans and animals. The new type of coronavirus COVID-19 was firstly discovered in Wuhan, China. However, recently, the virus has widely spread in most of the world and causing a pandemic according to the World Health Organization (WHO). Further, nowadays, all the world countries are striving to control the COVID-19. There are many mechanisms to detect coronavirus including clinical analysis of chest CT scan images and blood test results. The confirmed COVID-19 patient manifests as fever, tiredness, and dry cough. Particularly, several techniques can be used to detect the initial results of the virus such as medical detection Kits. However, such devices are incurring huge cost, taking time to install them and use. Therefore, in this paper, a new framework is proposed to detect COVID-19 using built-in smartphone sensors. The proposal provides a low-cost solution, since most of radiologists have already held smartphones for different dailypurposes. Not only that but also ordinary people can use the framework on their smartphones for the virus detection purposes. Today's smartphones are powerful with existing computationrich processors, memory space, and large number of sensors including cameras, microphone, temperature sensor, inertial sensors, proximity, colour-sensor, humidity-sensor, and wireless chipsets/sensors. The designed Artificial Intelligence (AI) enabled framework reads the smartphone sensors' signal measurements to predict the grade of severity of the pneumonia as well as predicting the result of the disease.
In this paper a modified Particle Swarm Optimization (PSO) algorithm called Autonomous Groups Particles Swarm Optimization (AGPSO) is proposed to further alleviate the two problems of trapping in local minima and slow convergence rate in solving high dimensional problems. The main idea of AGPSO algorithm is inspired by individuals' diversity in bird flocking or insect swarming. In natural colonies, individuals are not basically quite similar in terms of intelligence and ability, but they all do their duties as members of a colony. Each individual's ability can be useful in a particular situation. In this paper a mathematical model of diverse particles groups called autonomous groups is proposed. In other words different functions with diverse slopes, curvatures, and interception points are employed to tune the social and cognitive parameters of the PSO algorithm to give particles different behaviors as in natural colonies. The results show that PSO with autonomous groups of particles outperforms the conventional and some recent modifications of PSO in terms of escaping local minima and convergence speed. The results also indicate that dividing particles in groups and allowing them to have different individual and social thinking can improve the performance of PSO significantly.
The novel coronavirus 2019 first appeared in Wuhan province of China and spread quickly around the globe and became a pandemic. The gold standard for confirming COVID-19 infection is through Reverse Transcription-Polymerase Chain Reaction (RT-PCR) assay. The lack of sufficient RT-PCR testing capacity, false negative results of RT-PCR, time to get back the results and other logistical constraints enabled the epidemic to continue to spread albeit interventions like regional or complete country lockdowns. Therefore, chest radiographs such as CT and X-ray can be used to supplement PCR in combating the virus from spreading. In this work, we focus on proposing a deep learning tool that can be used by radiologists or healthcare professionals to diagnose COVID-19 cases in a quick and accurate manner. However, the lack of a publicly available dataset of X-ray and CT images makes the design of such AI tools a challenging task. To this end, this study aims to build a comprehensive dataset of X-rays and CT scan images from multiple sources as well as provides a simple but an effective COVID-19 detection technique using deep learning and transfer learning algorithms. In this vein, a simple convolution neural network (CNN) and modified pre-trained AlexNet model are applied on the prepared X-rays and CT scan images. The result of the experiments shows that the utilized models can provide accuracy up to 98% via pre-trained network and 94.1% accuracy by using the modified CNN.
Global Health sometimes faces pandemics as are currently facing COVID-19 disease. The spreading and infection factors of this disease are very high. A huge number of people from most of the countries are infected within six months from its first report of appearance and it keeps spreading. The required systems are not ready up to some stages for any pandemic; therefore, mitigation with existing capacity becomes necessary. On the other hand, modern-era largely depends on Artificial Intelligence(AI) including Data Science; Deep Learning(DL) is one of the current flag-bearer of these techniques. It could use to mitigate COVID-19 like pandemics in terms of stop spread, diagnosis of the disease, drug & vaccine discovery, treatment, and many more. But this DL requires large datasets as well as powerful computing resources. A shortage of reliable datasets of a running pandemic is a common phenomenon. So, Deep Transfer Learning(DTL) would be effective as it learns from one task and could work on another task. In addition, Edge Devices(ED) such as IoT, Webcam, Drone, Intelligent Medical Equipment, Robot, etc. are very useful in a pandemic situation. These types of equipment make the infrastructures sophisticated and automated which helps to cope with an outbreak. But these are equipped with low computing resources, so, applying DL is also a bit challenging; therefore, DTL also would be effective there. This article scholarly studies the potentiality and challenges of these issues. It has described relevant technical backgrounds and reviews of the related recent state-of-the-art. This article also draws a pipeline of DTL over Edge Computing as a future scope to assist the mitigation of any pandemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.