In this paper, we use operational matrices of piecewise constant orthogonal functions on the interval [0, 1) to solve Volterra integral and integro-differential equations of convolution type without solving any system. We first obtain Laplace transform of the problem and then we find numerical inversion of Laplace transform by operational matrices. Numerical examples show that the approximate solutions have a good degree of accuracy.
In this paper, we use the Sinc Function to solve the Fredholme-Volterra Integral Equations. By using collocation method we estimate a solution for Fredholme-Volterra Integral Equations. Finally convergence of this method will be discussed and efficiency of this method is shown by some examples. Numerical examples show that the approximate solutions have a good degree of accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.