Deep eutectic solvents (DES) are a mixture of two or more components and are classified as ionic solvents with special properties such as low volatility, high solubility, low melting points, low-cost materials and are less toxic to humans. Using DES has been suggested as an eco-friendly, green method for extraction of bioactive compounds from medicinal plants and are a safe alternative for nutritional, pharmaceutical and various sector applications. Conventional solvent extraction methods present drawbacks such as long extraction period, safety issues, harmful to the environment, costly and large volume of solvents required. The extraction method with DES leads to higher extraction yield and better bioactivity results as compared to the conventional solvents. This review provides a summary of research progress regarding the advantages of using DES to extract bioactive compounds such as phenolic acid, flavonoids, isoflavones, catechins, polysaccharides, curcuminoids, proanthocyanidin, phycocyanin, gingerols, ginsenosides, anthocyanin, xanthone, volatile monoterpenes, tannins, lignin, pectin, rutin, tert-butyl hydroquinone, chlorogenic acids, resveratrol and others, as opposed to using conventional solvents. The bioactivity of the extracts is determined using antioxidant, antibacterial and antitumor activities. Hence, DESs are considered potential green media with selective and efficient properties for extracting bioactive ingredients from medicinal plants.
Tuberculosis (TB) is a massive problem for public health and is the leading cause of illness and death worldwide. Rosemary (Rosmarinus officinalis) is used traditionally to treat many diseases, such as infections of the lungs including pulmonary TB. R. officinalis was collected from Al Anbar Governorate, Iraq, and was extracted with deep eutectic solvents (DESs) of many different kinds and with conventional water solvent. The antimycobacterial activities of the R. officinalis extracts were tested against multidrug-resistant (MDR) Mycobacterium tuberculosis by agar disc diffusion assay. Minimum inhibitory concentrations were measured spectrophotometrically at 570 nm. Then, a time-kill assay and cell membrane integrity analysis were conducted to investigate the effects of the most active extracts on cell growth. The in vitro cytotoxicity of the most active extracts was evaluated against Rat Embryonic Fibroblasts (REF) cell line by MTT assay. Liquid chromatography-mass spectrometry (LC-MS) was conducted to analyze the chemical components of the most active extracts. At 200 mg/mL concentration, a significant inhibition activity was seen in DES2: Tailor (DIZ = 17.33 ± 1.15 mm), followed by DES3: ChGl, DES1: LGH and DES4: ChXl. The best result was DES2: Tailor, which had a MIC of 3.12 mg/mL and an MBC of 12.5 mg/mL. The DES2 extract exhibited a high drop in the number of colonies over time, killing more than 80 colonies. The main phytochemical compounds of the R. officinalis extract were camphene, camphenilol, α-pinene, limonene, apigenin, camphor, carnosol, linalool and myrcene. R. officinalis extracts obtained by DESs have shown evident power in treating tuberculosis, and extraction by DES is a greener procedure than the methods involving conventional extraction solvents. As a result, additional research into the application of DES should be considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.