The current study deals with a digestive α-amylase in the larvae of Pieris brassicae L. through purification, enzymatic characterization, gene expression, and in vivo effect of a specific inhibitor, Acarbose. Although α-amylase activity was the highest in the whole gut homogenate of larvae but compartmentalization of amylolytic activity showed an equal activity in posterior midgut (PM) and anterior midgut (AM). A three step purification using ammonium sulfate, Sepharyl G-100 and DEAE-Cellulose Fast flow revealed an enzyme with a specific activity of 5.18 U/mg, recovery of 13.20, purification fold of 19.25 and molecular weight of 88 kDa. The purified α-amylase had the highest activity at optimal pH and temperature of 8 and 35°C. Also, the enzyme had Vmax values of 4.64 and 3.02 U/mg protein and Km values of 1.37 and 1.74% using starch and glycogen as substrates, respectively. Different concentrations of acarbose, ethylenediamine tetraacetic acid, and ethylene glycol-bis (β-aminoethylether) N, N, N′, N′-tetraacetic acid significantly decreased activity of the purified α-amylase. The 4th instar larvae of P. brassicae were fed on the treated leaves of Raphanus sativus L. with 0.22 mM of Acarbose to find in vivo effects on nutritional indices, α-amylase activity, and gene expression. The significant differences were only found in conversion efficiency of digested food, relative growth rate, and metabolic cost of control and fed larvae on Acarbose. Also, amylolytic activity significantly decreased in the treated larvae by both biochemical and native-PAGE experiments. Results of RT-PCR revealed a gene with 621 bp length responsible for α-amylase expression that had 75% identity with Papilio xuthus and P. polytes. Finally, qRT-PCR revealed higher expression of α-amylase in control larvae compared to acarbose-fed ones.
A comprehensive study on digestive trypsin was undertaken in the larval midgut of Pieris brassicae L. Results of enzymatic compartmentalization showed a significantly higher activity of crude trypsin in the anterior larval midgut rather than posterior-midgut. Using Diethylaminoethyl cellulose fast flow column chromatography a purified trypsin was obtained by specific activity of 21 U mg-1 protein, recovery of 22%, purification fold of 28-fold and molecular weight of 25 kDa. This purified enzyme showed the highest activity at pH 8 and the corresponding temperature of 40°C. However, the specific inhibitors used including 4-(2-Aminoethyl) benzenesulfonyl fluroride hydrochloride, N-p-Tosyl-L-lysine methyl ester hydrochloride and Soybean Trypsin Inhibitor significantly lowered the activity of the purified enzyme in vitro. Moreover, the activity of trypsin and likewise the nutritional indices were significantly altered in the larval midgut feeding upon the leaves treated by 1 mM concentration of each inhibitor in comparison with control. Determination of enzymatic characteristics of insect trypsins is crucial in paving the path for controlling pests by potential natural compounds via transgenic plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.