In this paper, we present the two-step trigonometrically fitted symmetric Obrechkoff methods with algebraic order of twelve. The method is based on the symmetric two-step Obrechkoff method, with 12 algebraic order, high phase-lag order and is constructed to solve IVPs with periodic solutions such as orbital problems. We compare the new method to some recently constructed optimized methods from the literature. The numerical results obtained by the new method for some problems show its superiority in efficiency, accuracy and stability.
In this article, a variable step size strategy is adopted in formulating a new variable step hybrid block method (VSHBM) for the solution of the Kepler problem, which is known to be a rigid and stiff differential equation. To derive the VSHBM, the step size ratio r is left the same, halved, or doubled in order to optimize the total number of steps, minimize the number of formulae stored in the code, and ensure that the method is zero-stable. The method is formulated by integrating the Lagrange polynomial with limits of integration selected at special points. The article further analyzed the stability, order, consistency, and convergence properties of the VSHBM. The stability regions of the VSHBM at different values of the step size ratios were also plotted and plots showed that the method is fit for solving the Kepler problem. The results generated were then compared with some existing methods, including the MATLAB inbuilt stiff solver (ode 15 s), with respect to total number of failure steps, total number of steps, total function calls, maximum error, and computation time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.