Simple hardware architecture for implementation of pairwise Support Vector Machine (SVM) classifiers on FPGA is presented. Training phase of the SVM is performed offline, and the extracted parameters used to implement testing phase of the SVM on the hardware. In the architecture, vector multiplication operation and classification of pairwise classifiers is designed in parallel and simultaneously. In order to realization, a dataset of Persian handwritten digits in three different classes is used for training and testing of SVM. Graphically simulator, System Generator, has been used to simulate the desired hardware design. Implementation of linear and nonlinear SVM classifier using simple blocks and functions, no limitation in the number of samples, generalized to multiple simultaneous pairwise classifiers, no complexity in hardware design, and simplicity of blocks and functions used in the design are view of the obvious characteristics of this research. According to simulation results, maximum frequency of 202.840 MHz in linear classification, and classification accuracy of 98.67% in nonlinear one has been achieved, which shows outstanding performance of the hardware designed architecture
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.