Summary Distinct stages in ATP-dependent chromatin remodeling are found as ISW2, an ISWI type complex, forms a stable and processive complex with nucleosomes upon hydrolysis of ATP. There are two conformational changes of the ISW2-nucleosome complex associated with binding and hydrolysis of ATP. The initial binding of ISW2 to extranucleosomal DNA, the entry site and near the dyad axis of the nucleosome is enhanced by ATP binding; while subsequent ATP hydrolysis is required for template-commitment and causes ISW2 to expand its interactions with nucleosomal DNA to an entire gyre of the nucleosome and a short ~3–4 bp site on the other gyre. The histone-fold like subunit Dpb4 associates with nucleosomal DNA ~15 bp from the ATPase domain as part of this change and may help disrupt histone-DNA interactions. These additional contacts are independent of the ATPase domain tracking along nucleosomal DNA and are maintained as ISW2 moves nucleosomes on DNA.
Tillage and fertilization are common practices used to enhance soil fertility and increase yield. Changes in soil edaphic properties associated with different tillage and fertility regimes have been widely examined, yet, the microbially mediated pathways and ecological niches involved in enhancing soil fertility are poorly understood. The effects of long-term conventional tillage and no-till in parallel with three fertility treatments (No fertilization, N-only, and NPK) on soil microbial communities were investigated in a long-term field study that was established in the 1970's. Here, we used highthroughput sequencing of bacterial, fungal and oomycetes markers, followed by community-level functional and ecological assembly to discern principles governing tillage and fertility practices' influence on associated soil microbiomes. Both tillage and fertilizer significantly altered microbial community structure, but the tillage effect was more prominent than the fertilizer effect. Tillage significantly affected bacteria, fungi, fusaria, and oomycete beta-diversity, whereas fertilizer only affected bacteria and fungi beta-diversity. In our study different tillage and fertilizer regimes favored specific networks of metabolic pathways and distinct ecological guilds. No-till selected for beneficial microbes that translocate nutrients and resources and protect the host against pathogens. Notably, ecological guilds featuring arbuscular mycorrhizae, mycoparasites, and nematophagous fungi were favored in no-till soils, while fungal saprotrophs and plant pathogens dominated in tilled soils. Conventional till and fertilizer management shifted the communities toward fast growing competitors. Copiotrophic bacteria and fusarium species were favored under conventional tillage and in the presence of fertilizers. The analysis of the metagenomes revealed a higher abundance of predicted pathways associated with energy metabolism, translation, metabolism of cofactors and vitamins, glycan biosynthesis and nucleotide metabolism in no-till. Furthermore, no specific pathways were found to be enriched under the investigated fertilization
BackgroundSoybean (Glycine max (L. Merr.)) resistance to any population of Heterodera glycines (I.), or Fusarium virguliforme (Akoi, O’Donnell, Homma & Lattanzi) required a functional allele at Rhg1/Rfs2. H. glycines, the soybean cyst nematode (SCN) was an ancient, endemic, pest of soybean whereas F. virguliforme causal agent of sudden death syndrome (SDS), was a recent, regional, pest. This study examined the role of a receptor like kinase (RLK) GmRLK18-1 (gene model Glyma_18_02680 at 1,071 kbp on chromosome 18 of the genome sequence) within the Rhg1/Rfs2 locus in causing resistance to SCN and SDS.ResultsA BAC (B73p06) encompassing the Rhg1/Rfs2 locus was sequenced from a resistant cultivar and compared to the sequences of two susceptible cultivars from which 800 SNPs were found. Sequence alignments inferred that the resistance allele was an introgressed region of about 59 kbp at the center of which the GmRLK18-1 was the most polymorphic gene and encoded protein. Analyses were made of plants that were either heterozygous at, or transgenic (and so hemizygous at a new location) with, the resistance allele of GmRLK18-1. Those plants infested with either H. glycines or F. virguliforme showed that the allele for resistance was dominant. In the absence of Rhg4 the GmRLK18-1 was sufficient to confer nearly complete resistance to both root and leaf symptoms of SDS caused by F. virguliforme and provided partial resistance to three different populations of nematodes (mature female cysts were reduced by 30–50%). In the presence of Rhg4 the plants with the transgene were nearly classed as fully resistant to SCN (females reduced to 11% of the susceptible control) as well as SDS. A reduction in the rate of early seedling root development was also shown to be caused by the resistance allele of the GmRLK18-1. Field trials of transgenic plants showed an increase in foliar susceptibility to insect herbivory.ConclusionsThe inference that soybean has adapted part of an existing pathogen recognition and defense cascade (H.glycines; SCN and insect herbivory) to a new pathogen (F. virguliforme; SDS) has broad implications for crop improvement. Stable resistance to many pathogens might be achieved by manipulation the genes encoding a small number of pathogen recognition proteins.
Host resistance to "yellow dwarf" or "moonlight" disease cause by any population (Hg type) of Heterodera glycines I., the soybean cyst nematode (SCN), requires a functional allele at rhg1. The host resistance encoded appears to mimic an apoptotic response in the giant cells formed at the nematode feeding site about 24-48 h after nematode feeding commences. Little is known about how the host response to infection is mediated but a linked set of 3 genes has been identified within the rhg1 locus. This study aimed to identify the role of the genes within the locus that includes a receptor-like kinase (RLK), a laccase and an ion antiporter. Used were near isogeneic lines (NILs) that contrasted at their rhg1 alleles, gene-based markers, and a new Hg type 0 and new recombination events. A syntenic gene cluster on Lg B1 was found. The effectiveness of SNP probes from the RLK for distinguishing homolog sequence variants on LgB1 from alleles at the rhg1 locus on LgG was shown. The resistant allele of the rhg1 locus was shown to be dominant in NILs. None of the recombination events were within the cluster of the three candidate genes. Finally, rhg1 was shown to reduce the plant root development. A model for rhg1 as a dominant multi-gene resistance locus based on the developmental control was inferred.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.