Single-point incremental forming is a novel and flexible method for producing three-dimensional parts from metal sheets. Although single-point incremental forming is a suitable method for rapid prototyping of sheet metal components, there are limitations and challenges facing the commercialization of this process. Dimensional accuracy, surface quality, and production time are of vital importance in any manufacturing process. The present study is aimed at selecting proper forming parameters to produce sheet metal parts which possess dimensional accuracy and good surface quality at the shortest time. Four parameters (i.e. tool diameter, tool step depth, sheet thickness, and feed rate) are chosen as design variables. These parameters are used for the modeling of the process using Group Method of Data Handing(GMDH) artificial neural networks. The data necessary for establishing empirical models are obtained from single-point incremental forming experiments carried out on a computer numerical control milling machine using central composite design. After the evaluation of the model accuracy, single- and multi-objective optimization are performed via genetic algorithm. The performance of the design variables of a tradeoff point corresponding to one of the experiments shows the efficiency and accuracy of the models and the optimization process. Considering the priorities of objective functions, a designer will be able to set proper process parameters.
We propose chlorpromazine (CHP) as a new mediator for the rapid, sensitive, and highly selective voltammetric determination of homocysteine (Hcy) using multiwall carbon nanotube paste electrode (MWCNTPE). The experimental results showed that the carbon nanotube paste electrode has a highly electrocatalytic activity for the oxidation of Hcy in the presence of CHP as a mediator. Cyclic voltammetry, double potential step chronoamperometry, and square wave voltammetry (SWV) are used to investigate the suitability of CHP at the surface of MWCNTPE as a mediator for the electrocatalytic oxidation of Hcy in aqueous solutions. The kinetic parameters of the system, including electron transfer coefficient, and catalytic rate constant were also determined using the electrochemical approaches. In addition, SWV was used for quantitative analysis. SWV showed wide linear dynamic range (0.1–210.0 μM Hcy) with a detection limit of 0.08 μM Hcy. Finally, this method was also examined as a selective, simple, and precise electrochemical sensor for the determination of Hcy in real samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.