During their operation, PV systems can be subject of various faults and anomalies that could lead to a reduction in the effectiveness and the profitability of the PV systems. These faults can crash, cause a fire or stop the whole system. The main objective of this work is to present a sophisticated method based on artificial neural networks ANN for diagnosing; detecting and precisely classifying the fault in the solar panels in order to avoid a fall in the production and performance of the photovoltaic system. The work established in this paper intends in first place to propose a method to detect possible various faults in PV module using the Multilayer Perceptron (MLP) ANN network. The developed artificial neural network requires a large database and periodic training to evaluate the output parameters with good accuracy. To evaluate the accuracy and the performance of the proposed approach, a comparison is carried out with the classic method (the method of thresholding). To test the effectiveness of the proposed approach in detecting and classifying different faults, an extensive simulation is carried out using Matlab SIMULINK.
Purpose
This paper aims to propose a new configuration of a shunt active power filter (SAPF) connected with a photovoltaic (PV) system through a Z-source inverter (ZSI) topology. This topology ensures a single-stage operation and overcomes the limitations of the conventional two-stage operation topologies based on the DC–DC boost converter. The proposed system is designed for the purpose of reducing the total harmonic distortion of the source current by eliminating the current harmonics and exploiting the solar irradiation.
Design/methodology/approach
First, all the main parts of the proposed shunt active power filter are fully described in this paper, and then a PV system based on a Z-source inverter with a maximum power point tracking controller is used to exploit the solar irradiance and solve the problem of discharging of the direct current (DC) capacitor during the filtering process.
Findings
From the extensive simulation tests carried out using MATLAB/Simulink, the obtained results prove that the proposed shunt active power filter performs well despite several operation scenarios, including different load types and under abrupt irradiance.
Originality/value
A new shunt active power filter configuration has been proposed. This configuration benefits from the solar irradiation and overcomes the drawbacks of the conventional configurations by using the Z-source inverter instead of the voltage source inverter and DC–DC boost converter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.