PurposeTo classify subjects with primary angle closure into clusters based on features from anterior segment optical coherence tomography (ASOCT) imaging and to explore how these clusters correspond to disease subtypes, including primary angle closure suspect (PACS), primary angle closure glaucoma(PACG), acute primary angle closure (APAC) and fellow eyes of APAC and reveal the factors that become more predominant in each subtype of angle closure.MethodA cross-sectional study of 248 eyes of 198 subjects(88 PACS eyes, 53 PACG eyes, 54 APAC eyes and 53 fellow eyes of APAC) that underwent complete examination including gonioscopy, A-scan biometry, and ASOCT. An agglomerative hierarchical clustering method was used to classify eyes based on ASOCT parameters.ResultsStatistical clustering analysis produced three clusters among which the anterior segment parameters were significantly different. Cluster 1(43 eyes) had the smallest anterior chamber depth(ACD) and area, as well as the greatest lens vault (p<0.001 for all). Cluster 2(113 eyes) had the thickest iris at 2000 microns(p = 0.048), and largest iris area(p<0.001), and the deepest ACD (p<0.001). Cluster 3(92 eyes) was characterized by elements of both clusters 1 and 2 and a higher iris curvature(p<0.001). There was a statistically significant difference in the distribution of clusters among subtypes of angle closure eyes(p<0.001). Although the patterns of clusters were similar in PACS and PACG eyes, with the majority of the eyes classified into cluster 2(55%, and 62%, respectively), the highest proportion of APAC and fellow eyes were assigned to clusters 1(44%) and 3 (51%), respectively.ConclusionHierarchical cluster analysis identified three clusters with different features. Predominant anatomical components are different among subtypes of primary angle closure.
Background To assess the impact of brachytherapy on macular microvasculature utilizing optical coherence tomography angiography (OCTA) in treated choroidal melanoma. Methods In this retrospective observational case series, we reviewed the recorded data of the patients with unilateral extramacular choroidal melanoma treated with ruthenium − 106 (106Ru) plaque radiotherapy with a follow-up period of more than 6 months. Automatically measured OCTA retinal parameters were analysed after image processing. Results Thirty-one eyes of 31 patients with the mean age of 51.1 years were recruited. Six eyes had no radiation maculopathy (RM). From 25 eyes with RM, nine eyes (36%) revealed a burnout macular microvasculature with imperceptible vascular details. Twenty-one non-irradiated fellow eyes from the enrolled patients were considered as the control group. Foveal and optic disc radiation dose had the highest value to predict the burnout pattern (ROC, AUC: 0.763, 0.727). Superficial and deep foveal avascular zone (FAZ) were larger in irradiated eyes in comparison to non-irradiated fellow eyes (1629 μm2 vs. 428 μm2, P = 0.005; 1837 μm2 vs 268 μm2, P = 0.021; respectively). Foveal and parafoveal vascular area density (VAD) and vascular skeleton density (VSD) in both superficial and deep capillary plexus (SCP and DCP) were decreased in all irradiated eyes in comparison with non-irradiated fellow eyes (P < 0.001). Compared with non-irradiated fellow eyes, irradiated eyes without RM had significantly lower VAD and VSD at foveal and parafoveal DCP (all P < 0.02). However, these differences at SCP were not statistically significant. Conclusion The OCTA is a valuable tool for evaluating RM. Initial subclinical microvascular insult after 106Ru brachytherapy is more likely to occur in DCP. The deep FAZ area was identified as a more critical biomarker of BCVA than superficial FAZ in these patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.