The need to a robust and effective methods for secure data transferring makes the more credible. Two disciplines for data encryption presented in this paper: machine learning and deoxyribonucleic acid (DNA) to achieve the above goal and following common goals: prevent unauthorized access and eavesdropper. They used as powerful tool in cryptography. This paper grounded first on a two modified Hebbian neural network (MHNN) as a machine learning tool for message encryption in an unsupervised method. These two modified Hebbian neural nets classified as a: learning neural net (LNN) for generating optimal key ciphering and ciphering neural net CNN) for coding the plaintext using the LNN keys. The second granulation using DNA nucleated to increase data confusion and compression. Exploiting the DNA computing operations to upgrade data transmission security over the open nets. The results approved that the method is effective in protect the transferring data in a secure manner in less time
In this paper, new multi-objective optimization algorithm is proposed. It optimizes the execution time, the energy consumption and the cost of booked nodes in the grid architecture at the same time. The proposed algorithm selects the best frequencies depends on a new optimization function that optimized these three objectives, while giving equivalent trade-off for each one. Dynamic voltage and frequency scaling (DVFS) is used to reduce the energy consumption of the message passing parallel iterative method executed over grid. DVFS is also reduced the computing power of each processor executing the parallel applications. Therefore, the performance of these applications is decreased and so on the paid cost for the booking nodes is increased. However, the proposed multi-objective algorithm gives the minimum energy consumption and minimum cost with maximum performance at the same time. The proposed algorithm is evaluated on the SimGrid/SMPI simulator while running the parallel iterative Jacobi method. The experiments show that it reduces on average the energy consumption by up to 19.7 %, while limiting the performance and cost degradations to 3.2 % and 5.2 % respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.