Objective A previous study, PheMAP, combined independent, online resources to enable high-throughput phenotyping (HTP) using electronic health records (EHRs). However, online resources offer distinct quality descriptions of diseases which may affect phenotyping performance. We aimed to evaluate the phenotyping performance of single resource-based PheMAPs and investigate an optimized strategy for HTP. Materials and Methods We compared how each resource produced top-ranked concept unique identifiers (CUIs) by term frequency—inverse document frequency with Jaccard matrices comparing single resources and the original PheMAP. We correlated top-ranked concepts from each resource to features used in established Phenotype KnowledgeBase (PheKB) algorithms for hypothyroidism, type II diabetes mellitus (T2DM), and dementias. Using resources separately, we calculated multiple phenotype risk scores for individuals from Vanderbilt University Medical Center’s BioVU DNA Biobank and compared phenotyping performance against rule-based eMERGE algorithms. Lastly, we implemented an ensemble strategy which classified patient case/control status based upon PheMAP resource agreement. Results Jaccard similarity matrices indicate that the similarity of CUIs comprising single resource-based PheMAPs varies. Single resource-based PheMAPs generated from MedlinePlus and MedicineNet outperformed others but only encompass 81.6% of overall disease phenotypes. We propose the PheMAP-Ensemble which provides higher average accuracy and precision than the combined average accuracy and precision of single resource-based PheMAPs. While offering complete phenotype coverage, PheMAP-Ensemble significantly increases phenotyping recall compared to the original iteration. Conclusions Resources comprising the PheMAP produce different phenotyping performance when implemented individually. The ensemble method significantly improves the quality of PheMAP by fully utilizing dissimilar resources to capture accurate phenotyping data from EHRs.
Background: Although electronic health records (EHR) have significant potential for the study of opioid use disorders (OUD), detecting OUD in clinical data is challenging. Models using EHR data to predict OUD often rely on case/control classifications focused on extreme opioid use. There is a need to expand this work to characterize the spectrum of problematic opioid use. Methods: Using a large academic medical center database, we developed 2 data-driven methods of OUD detection: (1) a Comorbidity Score developed from a Phenome-Wide Association Study of phenotypes associated with OUD and (2) a Text-based Score using natural language processing to identify OUD-related concepts in clinical notes. We evaluated the performance of both scores against a manual review with correlation coefficients, Wilcoxon rank sum tests, and area-under the receiver operating characteristic curves. Records with the highest Comorbidity and Text-based scores were re-evaluated by manual review to explore discrepancies. Results: Both the Comorbidity and Text-based OUD risk scores were significantly elevated in the patients judged as High Evidence for OUD in the manual review compared to those with No Evidence (p = 1.3E-5 and 1.3E-6, respectively). The risk scores were positively correlated with each other (rho = 0.52, p < 0.001). AUCs for the Comorbidity and Text-based scores were high (0.79 and 0.76, respectively). Follow-up manual review of discrepant findings revealed strengths of data-driven methods over manual review, and opportunities for improvement in risk assessment. Conclusion: Risk scores comprising comorbidities and text offer differing but synergistic insights into characterizing problematic opioid use. This pilot project establishes a foundation for more robust work in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.