We consider suspensions of finite-size neutrally buoyant rigid spherical particles in channel flow and investigate the relevance of different momentum transfer mechanisms and the relation between the local particle dynamics and the bulk flow properties in the highly inertial regime. Interface-resolved simulations are performed in the range of Reynolds numbers
$3000 \leq Re \leq 15\ 000$
and solid volume fractions
$0 \leq \phi \leq 0.3$
. The Lagrangian particle statistics show that pair interactions are highly inhomogeneous and dependent on the distance from the wall: in their vicinity, the underlying mean shear drives the pair interactions, while a high degree of isotropy, dictated by more frequent collisions, characterizes the core region. Analysis of the momentum balance reveals that while the particle-induced stresses govern the dynamics in dense conditions,
$\phi =0.3$
, and moderate Reynolds numbers,
$Re <10\ 000$
, the turbulent stresses take over at higher Reynolds numbers. This behaviour is associated with a reduced particle migration toward the channel core, which decreases the importance of the particle-induced stress and increases the turbulent activity. Our results indicate that Reynolds stresses and the associated velocity fluctuations, characteristics of near-wall turbulence, prevail at high inertia over the resistance to deformation presented by the particles for volume fractions lower than 30 %.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.