D’Amico et al. show that Dkk1 exerts immune-suppressive effects by directly targeting β-catenin in murine and human MDSCs and promoting their activation in cancer.
SUMMARY
Greater than 85% of advanced breast cancer patients suffer from metastatic bone lesions yet the mechanisms that facilitate these metastases remain poorly understood. Recent studies suggest that tumor-derived factors initiate changes within the tumor microenvironment to facilitate metastasis. However, whether stromal-initiated changes are sufficient to drive increased metastasis in the bone remains an open question. Thus, we developed a model to induce reactive senescent osteoblasts and found that they increased breast cancer colonization of the bone. Analysis of senescent osteoblasts revealed that they failed to mineralize bone matrix, and increased local osteoclastogenesis; the latter process being driven by the senescence-associated secretory phenotype factor, IL-6. Neutralization of IL-6 was sufficient to limit senescence-induced osteoclastogenesis and tumor cell localization to bone, thereby reducing tumor burden. Together, these data suggest that a reactive stromal compartment can condition the niche, in the absence of tumor-derived signals, to facilitate metastatic tumor growth in the bone.
a b s t r a c tSerotonin, a known neurotransmitter, also functions as an angiokine to promote angiogenesis. The majority of serotonin in the human body is stored in platelets, and platelet aggregation leads to significant release of serotonin in thrombotic tumor environment. We have investigated serotonin signaling in human endothelial cells. Through G-protein-coupled receptors, serotonin at physiologically relevant concentrations activated Src/PI3K/AKT/mTOR/p70S6K phosphorylation signaling, and this activation was similar to that seen with VEGF. This finding provides insight into the overlapping angiogenic signaling pathways stimulated by serotonin in tumor environment, and suggests one of the mechanisms underlying resistance to current VEGF-targeting antiangiogenic therapy against cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.