In large infrastructures such as dams, which have a relatively high economic value, ensuring the proper operation of the associated hydraulic facilities in different operating conditions is of utmost importance. To ensure the correct and successful operation of the dam's hydraulic equipment and prevent possible damages, including gates and downstream tunnel, to build laboratory models and perform some tests are essential (the advancement of the smart sensors based on artificial intelligence is essential). One of the causes of damage to dam bottom outlets is cavitation in downstream and between the gates, which can impact on dam facilities, and air aeration can be a solution to improve it. In the present study, six dams in different provinces in Iran has been chosen to evaluate the air entrainment in the downstream tunnel experimentally. Three artificial neural networks (ANN) based machine learning (ML) algorithms are used to model and predict the air aeration in the bottom outlet. The proposed models are trained with genetic algorithms (GA), particle swarm optimization (PSO), i.e., ANN-GA, ANN-PSO, and ANFIS-PSO. Two hydrodynamic variables, namely volume rate and opening percentage of the gate, are used as inputs into all bottom outlet models. The results showed that the most optimal model is ANFIS-PSO to predict the dependent value compared with ANN-GA and ANN-PSO. The importance of the volume rate and opening percentage of the dams' gate parameters is more effective for suitable air aeration.
In large infrastructures such as dams, which have a relatively high economic value, ensuring the proper operation of the associated hydraulic facilities in different operating conditions is of utmost importance. To ensure the correct and successful operation of the dam's hydraulic equipment and prevent possible damages, including gates and downstream tunnel, to build laboratory models and perform some tests are essential (the advancement of the smart sensors based on artificial intelligence is essential). One of the causes of damage to dam bottom outlets is cavitation in downstream and between the gates, which can impact on dam facilities, and air aeration can be a solution to improve it. In the present study, six dams in different provinces in Iran has been chosen to evaluate the air entrainment in the downstream tunnel experimentally. Three artificial neural networks (ANN) based machine learning (ML) algorithms are used to model and predict the air aeration in the bottom outlet. The proposed models are trained with genetic algorithms (GA), particle swarm optimization (PSO), i.e., ANN-GA, ANN-PSO, and ANFIS-PSO. Two hydrodynamic variables, namely volume rate and opening percentage of the gate, are used as inputs into all bottom outlet models. The results showed that the most optimal model is ANFIS-PSO to predict the dependent value compared with ANN-GA and ANN-PSO. The importance of the volume rate and opening percentage of the dams' gate parameters is more effective for suitable air aeration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.