General formulation of practically applicable fundamental approach for development of engineering applications in systems with dynamically appearing and disappearing fractal structures is proposed. The approach is illustrated on the low-temperature pyrolysis of butane/propane mixture being pumped via the liquid tin and bismuth alloy preserved at the temperature 200 ± 20°C in the U-shaped test glass. Other prospective engineering applications of the approach are proposed on the base of analysis of selected experiments described in literature.
Simulation of the direct reduction conditions was performed in a laboratory furnace. Lump samples from natural hematite iron ore were reduced by a gas mixture of H 2 and CO (H 2 /CO =1.5) at temperatures of 700˚C, 800˚C and 900˚C. The effect of reduction temperature on the reduction degree, reduction rate of samples and carbon deposition were investigated and discussed in this study. The thermo-gravimetric data obtained from the reduction experiments was run in a programme that calculates the solid conversion rate. Also, three models: 1) Grain Model (GM), 2) Volumetric Model (VM), and 3) the Random Pore Model (RPM), were used to estimate the reduction kinetics of natural iron ores. It was found that the RPM model result agreed best with the obtained experimental results. Furthermore, it gave better predictions of the natural iron oxide conversion and thereby the reduction kinetics.
Experimental research on the pyrolysis and gasification of randomly packed straw pellets was conducted with an emphasis on the reactive properties of the shrinking porous structure of the pellets. The apparent kinetics of such pyrolysis was approximated by the random pore, grain, and volumetric models. The best approximation results were obtained with the grain and random pore models. The self-organized oscillations of the pellet conversion rate during pyrolysis were observed. Two complementary explanations of the phenomenon are proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.