Optical spectrometers and sensors have gained enormous importance in metrology and information technology, frequently involving the question of size, resolution, sensitivity, spectral range, efficiency, reliability, and cost. Nanomaterials and nanotechnological fabrication technologies have huge potential to enable an optimization between these demands, which in some cases are counteracting each other. This paper focuses on the visible and near infrared spectral range and on five types of optical sensors (optical spectrometers): classical grating-based miniaturized spectrometers, arrayed waveguide grating devices, static Fabry–Pérot (FP) filter arrays on sensor arrays, tunable microelectromechanical systems (MEMS) FP filter arrays, and MEMS tunable photonic crystal filters. The comparison between this selection of concepts concentrates on (i) linewidth and resolution, (ii) required space for a selected spectral range, (iii) efficiency in using available light, and (iv) potential of nanoimprint for cost reduction and yield increase. The main part of this review deals with our own results in the field of static FP filter arrays and MEMS tunable FP filter arrays. In addition, technology for efficiency boosting to get more of the available light is demonstrated.
Optical interferometric sensors have acquired significant importance in metrology and information technology, especially in terms of their potential application in launching size, selectivity, sensitivity, resolution, spectral tuning ranges, efficiency, and cost. However, these demands are often contradictory and counteract one another, and are thus difficult to simultaneously fulfill during their interaction. This review focuses on a detailed comparison of seven different strongly miniaturized sensor concepts investigating the limits of these demands. For the visible and near-infrared spectral range, seven optical sensors were reviewed based on the following methodologies: classical optical transmission and reflection gratings, arrayed waveguide gratings, static Fabry–Pérot (FP) filter arrays, MEMS tunable FP interferometers, MEMS tunable photonic crystals, plasmonic filters, and fiber tip sensors. The comparison between the selected concepts concentrates on (i) the minimum space required for a particular spectral range, (ii) resolution, (iii) the integration in optical fiber technology, (iv) tunability to save space, (v) efficiency in using available light, (vi) multiplexing, (vii) miniaturization limits, and (viii) the potential of nanoimprint for cost reduction. Technologies for enhancing efficiency to obtain more available light and their applicability to the different methodologies were studied.
A method that significantly increases the detection efficiency of filter array-based spectral sensors is proposed. The basic concept involves a wavelength-dependent redistribution of incident light before it reaches the filter elements located in front of the detector. Due to this redistribution, each filter element of the array receives a spatially concentrated amount of a pre-selected and adjusted spectral partition of the entire incident light. This approach can be employed to significantly reduce the reflection and absorption losses of each filter element. The proof-of-concept is demonstrated by a setup that combines a series of consecutively arranged dichroic filters with Fabry–Perot filter arrays. Experimentally, an efficiency increase by a factor larger than 4 compared to a reference system is demonstrated. The optical system is a non-imaging spectrometer, which combines the efficiency enhancement module with the filter arrays, is compact ( 17.5 m m × 17.5 m m × 7.8 m m ), and integrated completely inside the CCD camera mount.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.