The genomic DNA of bacteria is highly compacted in a single or a few bodies known as nucleoids. Here, we have isolated Escherichia coli nucleoid by sucrose density gradient centrifugation. The sedimentation rates, structures as well as protein/DNA composition of isolated nucleoids were then compared under various growth phases. The nucleoid structures were found to undergo changes during the cell growth; i. e., the nucleoid structure in the stationary phase was more tightly compacted than that in the exponential phase. In addition to factor for inversion stimulation (Fis), histone-like nucleoid structuring protein (H-NS), heat-unstable nucleoid protein (HU) and integration host factor (IHF) here we have identified, three new candidates of E. coli nucleoid, namely DNA-binding protein from starved cells (Dps), host factor for phage Q Hfq) and suppressor of td phenotype A (StpA). Our results reveal that the major components of exponential phase nucleoid are Fis, HU, H-NS, StpA and Hfq, while Dps occupies more than half of the stationary phase nucleoid. It has been known for a while that Dps is the main nucleoid-associated protein at stationary phase. From these results and the prevailing information, we propose a model for growth phase dependent changes in the structure and protein composition of nucleoid in E. coli. growth phase, sucrose gradient, bacterial nucleoid, DNA binding protein, DNA compaction Citation:Talukder AA, Ishihama A. Growth phase dependent changes in the structure and protein composition of nucleoid in Escherichia coli. Sci China Life Sci, 2015, 58: 902 -911,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.