This paper reports the experimental investigation of the steady-state creep process for fine-grained asphalt concrete at a temperature of 20 ± 2 • C and under stress from 0.055 to 0.311 MPa under direct tension and was found to occur at a constant rate. The experimental results also determined the start, the end point, and the duration of the steady-state creep process. The dependence of these factors, in addition to the steady-state creep rate and viscosity of the asphalt concrete on stress is satisfactorily described by a power function. Furthermore, it showed that stress has a great impact on the specific characteristics of asphalt concrete: stress variation by one order causes their variation by 3-4.5 orders. The described relations are formulated for the steady-state of asphalt concrete in a complex stressed condition. The dependence is determined between stress intensity and strain rate intensity.
This work proposes an effective algorithm for description of nonlinear deformation of hereditary materials based on Rabotnov's method of isochronous creep curves. The notions have been introduced for experimental and model rheological parameters and similarity coefficients of isochronous curves. It has been shown how using them, one can find instantaneous strains at various stress levels for description of nonlinear deformation of hereditary materials at creep. Relevant equations have been determined from the nonlinear integral equation of Yu. N. Rabotnov for the application cases of Rabotnov's fractional exponential kernel and Abel's kernel for nonlinear deformation of hereditary materials at creep. The improved methods have been given for determination of creep parameters α, ε 0 , δ, β, and λ. By processing and using test results for material Nylon 6 and glass-reinforced plastic TC 8/3-250, the process has been shown for sequential implementation of the developed methods for description of linear and nonlinear deformation of these materials at creep. From the results of the experimental investigation performed by the authors of this paper, it has been determined that fine-grained, dense asphalt concrete at the temperature of 20 ± 2 • C and stresses up to 0.183 MPa at direct tension is deformed considerably in a nonlinear way. It has been shown in an illustrative way by construction of isochronous creep curves at various load durations and curves of experimental rheological parameter at various stresses. Nonlinear deformation of asphalt concrete at creep is adequately described by the proposed methods.
Creep process of linear viscoelastic materials is described by the integral equation of Boltzmann-Volterra in which creep kernel is approximated by Rabotnov’s fractional exponential function. The creep equation contains four unknown parameters:α, singularity parameter;β, fading parameter;λ, rheological parameter; andε0, conditionally instantaneous strain. Two-stage determination method of creep parameters is offered. At the first stage, taking into account weak singularity properties of Abel’s function at the initial moment of loading, parametersε0andαare determined. At the second stage, using already known parametersε0andα, parametersβandλare determined. Analytical expressions for calculating these parameters are obtained. An accuracy evaluation of the offered method with using experimentally determined creep strains of material Nylon 6 and asphalt concrete showed its high accuracy.
NAS RK is pleased to announce that News of NAS RK. Series of geology and technical sciences scientific journal has been accepted for indexing in the Emerging Sources Citation Index, a new edition of Web of Science. Content in this index is under consideration by Clarivate Analytics to be accepted in the Science Citation Index Expanded, the Social Sciences Citation Index, and the Arts & Humanities Citation Index. The quality and depth of content Web of Science offers to researchers, authors, publishers, and institutions sets it apart from other research databases. The inclusion of News of NAS RK. Series of geology and technical sciences in the Emerging Sources Citation Index demonstrates our dedication to providing the most relevant and influential content of geology and engineering sciences to our community. Қазақстан Республикасы Ұлттық ғылым академиясы "ҚР ҰҒА Хабарлары. Геология жəне техникалық ғылымдар сериясы" ғылыми журналының Web of Science-тің жаңаланған нұсқасы Emerging Sources Citation Index-те индекстелуге қабылданғанын хабарлайды. Бұл индекстелу барысында Clarivate Analytics компаниясы журналды одан əрі the Science Citation Index Expanded, the Social Sciences Citation Index жəне the Arts & Humanities Citation Index-ке қабылдау мəселесін қарастыруда. Webof Science зерттеушілер, авторлар, баспашылар мен мекемелерге контент тереңдігі мен сапасын ұсынады. ҚР ҰҒА Хабарлары. Геология жəне техникалық ғылымдар сериясы Emerging Sources Citation Index-ке енуі біздің қоғамдастық үшін ең өзекті жəне беделді геология жəне техникалық ғылымдар бойынша контентке адалдығымызды білдіреді. НАН РК сообщает, что научный журнал «Известия НАН РК. Серия геологии и технических наук» был принят для индексирования в Emerging Sources Citation Index, обновленной версии Web of Science. Содержание в этом индексировании находится в стадии рассмотрения компанией Clarivate Analytics для дальнейшего принятия журнала в the Science Citation Index Expanded, the Social Sciences Citation Index и the Arts & Humanities Citation Index. Web of Science предлагает качество и глубину контента для исследователей, авторов, издателей и учреждений. Включение Известия НАН РК. Серия геологии и технических наук в Emerging Sources Citation Index демонстрирует нашу приверженность к наиболее актуальному и влиятельному контенту по геологии и техническим наукам для нашего сообщества.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.