Raw milk is a frequent vehicle for transmission of thermophilic Campylobacter, leading to reported outbreaks. Milk is a challenging food matrix for pathogen detection, due to its high protein and lipid content. Limited detection of Campylobacter colony-forming unit (CFU) in raw milk might underestimate the pathogen's infectious potential. We optimized a viability real-time PCR (qPCR) for application with raw milk. The procedure was robust against variations of milk lots and different Campylobacter strains. Various DNA-intercalating dyes were evaluated for their ability to reduce the PCR signal of dead cells. Only propidium monoazide (PMA) and PMAxx qualified for diagnostic use. Different sedimentation properties of viable and dead Campylobacter jejuni and Campylobacter coli strains in 10-fold diluted milk enhanced viable/dead differentiation. The new method enabled to review survival of Campylobacter spp. in raw milk based on viable cells harboring an intact cell membrane. The data were compared to culturability according to ISO10272-2:2017. A difference of up to 4.5 log 10 between viable Campylobacter counts and CFU values became apparent. Relevance of viability qPCR values was corroborated by full recovery of CFU under extremely reduced oxygen concentration in the presence of hydrogen. Recovery of CFU was limited, however, upon prolonged exposure in raw milk. The data confirm that Campylobacter survival in raw milk can be largely underestimated when relying on CFU data only. We conclude that raw milk led to oxidative stress-induced growth arrest in thermophilic Campylobacter, which was reversible by reduction of the oxygen partial pressure in a time-limited way.
Expression of ABO and Lewis histo-blood group antigens by the gastrointestinal epithelium is governed by an α-1,2-fucosyltransferase enzyme encoded by the Fut2 gene. Alterations in mucin glycosylation have been associated with susceptibility to various bacterial and viral infections. Salmonella enterica serovar Typhimurium is a food-borne pathogen and a major cause of gastroenteritis. In order to determine the role of Fut2 -dependent glycans in Salmonella -triggered intestinal inflammation, Fut2 +/+ and Fut2 -/- mice were orally infected with S . Typhimurium and bacterial colonization and intestinal inflammation were analyzed. Bacterial load in the intestine of Fut2 -/- mice was significantly lower compared to Fut2 +/+ mice. Analysis of histopathological changes revealed significantly lower levels of intestinal inflammation in Fut2 -/- mice compared to Fut2 +/+ mice and measurement of lipocalin-2 level in feces corroborated histopathological findings. Salmonella express fimbriae that assist in adherence of bacteria to host cells thereby facilitating their invasion. The std fimbrial operon of S . Typhimurium encodes the π-class Std fimbriae which bind terminal α(1,2)-fucose residues. An isogenic mutant of S . Typhimurium lacking Std fimbriae colonized Fut2 +/+ and Fut2 -/- mice to similar levels and resulted in similar intestinal inflammation. In vitro adhesion assays revealed that bacteria possessing Std fimbriae adhered significantly more to fucosylated cell lines or primary epithelial cells in comparison to cells lacking α(1,2)-fucose. Overall, these results indicate that Salmonella -triggered intestinal inflammation and colonization are dependent on Std-fucose interaction.
Countries with a high incidence of helminth infections are characterized by high morbidity and mortality to infections with intracellular pathogens such as Salmonella. Some patients with Salmonella-Schistosoma co-infections develop a so-called “chronic septicemic salmonellosis,” with prolonged fever and enlargement of the liver and spleen. These effects are most likely due to the overall immunoregulatory activities of schistosomes such as induction of Tregs, Bregs, alternatively activated macrophages, and degradation of antibodies. However, detailed underlying mechanisms are not very well investigated. Here, we show that intraperitoneal application of live Schistosoma mansoni eggs prior to infection with Salmonella Typhimurium in mice leads to an impairment of IFN-γ and IL-17 responses together with a higher bacterial load compared to Salmonella infection alone. S. mansoni eggs were found in granulomas in the visceral peritoneum attached to the colon. Immunohistological staining revealed IPSE/alpha-1, a glycoprotein secreted from live schistosome eggs, and recruited basophils around the eggs. Noteworthy, IPSE/alpha-1 is known to trigger IL-4 and IL-13 release from basophils which in turn is known to suppress Th1/Th17 responses. Therefore, our data support a mechanism of how schistosomes impair a protective immune response against Salmonella infection and increase our understanding of helminth-bacterial co-infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.