2D hybrid organic–inorganic perovskites are valued in optoelectronic applications for their tunable bandgap and excellent moisture and irradiation stability. These properties stem from both the chemical composition and crystallinity of the layer formed. Defects in the lattice, impurities, and crystal grain boundaries generally introduce trap states and surface energy pinning, limiting the ultimate performance of the perovskite; hence, an in‐depth understanding of the crystallization process is indispensable. Here, a kinetic and thermodynamic study of 2D perovskite layer crystallization on transparent conductive substrates are provided—fluorine‐doped tin oxide and graphene. Due to markedly different surface structure and chemistry, the two substrates interact differently with the perovskite layer. A time‐resolved grazing‐incidence wide‐angle X‐ray scattering (GIWAXS) is used to monitor the crystallization on the two substrates. Molecular dynamics simulations are employed to explain the experimental data and to rationalize the perovskite layer formation. The findings assist substrate selection based on the required film morphology, revealing the structural dynamics during the crystallization process, thus helping to tackle the technological challenges of structure formation of 2D perovskites for optoelectronic devices.
dye-sensitized solar cells. The most studied perovskite compound is methylammonium lead iodide (CH 3 NH 3 PbI 3 , MAPI), although it is not moisture resistant and may be hazardous to the environment. Lee et al. [2] showed that perovskite thin layers could be used directly for harvesting solar radiation similar to inorganic semiconductors. Since then, tremendous advances have been made in optimizing perovskite solar cells (PSCs), with power conversion efficiencies (PCE) reaching 25.5% and thus coming to the proximity of single-crystal Si solar cells with a record PCE of 26.1%.The initial difficulties in preparing homogeneous perovskite films were overcome by introducing an antisolvent technique, [3,4] in which a small amount of a nonpolar solvent is used to induce heterogeneous nucleation of perovskite films. However, the antisolvent technique is not suitable for upscaling as it relies on spincoating technology. Hence, a large number of different deposition techniques [5,6] were developed to cast perovskite thin films using scalable technologies such as spray coating, inkjet printing, slot-die coating, blade coating, vacuum thermal evaporation, etc.Another way to improve the film homogeneity and crystallinity is to induce the formation of crystalline colloidal clusters Perovskite solar cells are well-known for their high energy conversion efficiency, low-temperature processing, and cost-effective production. Flash infrared annealing (FIRA) of slot-die cast perovskite precursors offers an attractive manufacturing route using high-throughput roll-to-roll technology. Despite the recent progress in FIRA perovskite annealing, the optimal composition of the perovskite precursor is yet to be developed. Here, the effect of methylammonium chloride (MACl) on the perovskite structure and trap-state density as a function of the FIRA annealing time is investigated. In situ real-time grazingincidence wide-angle X-ray scattering (GIWAXS) is employed to monitor the perovskite layer formation during FIRA annealing with millisecond temporal resolution. In addition, the density of states in the bandgap is estimated using ex situ energy-resolved electrochemical impedance spectroscopy. Evidence is found that adding 10% MACl into the perovskite precursor solution significantly improves the crystallographic orientation of the perovskite layers while reducing the trap-state density by one order of magnitude. In addition, using time-resolved GIWAXS, the most favorable time window for the FIRA processing of perovskite films with the lowest mosaicity and trap-state density is identified. The results are of general importance for elucidating the appropriate temporal windows in complex and fast-evolving crystallization processes.
Recent advances in the liquid-phase exfoliation enabled large-scale production of two-dimensional (2D) materials, including few-layer graphene and transition metal dichalcogenides. The exfoliated flakes of 2D materials allow cost-effective deposition of continuous films for various applications ranging from optoelectronics to lubrication technology. The self-assembly of 2D materials on water subphase and subsequent transfer of such a Langmuir film onto a solid substrate offers an unprecedented layer quality in terms of spatial homogeneity as it proceeds in thermodynamic equilibrium. However, while the formation of conventional organic molecular Langmuir films has been widely studied, the application of the Langmuir technique to rigid inorganic 2D materials is still rather unexplored.Here, we study the underlying mechanism behind the formation and collapse at the critical surface pressure of the Langmuir film composed of few-layer MoS 2 flakes. The in situ wide-angle X-ray scattering measured in real time and other supportive techniques applied ex situ after the film transfer onto a Si/SiO 2 substrate were employed. We identify all principal compression stages up to the Langmuir monolayer collapse and beyond, relying on the texture, surface pressure, and elastic modulus temporal evolution. The results obtained and the conclusions drawn can be extended to a large family of the inorganic Langmuir films of other 2D materials to optimize the deposition process for envisaged application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.