ObjectiveTo demonstrate the safety and effectiveness of responsive stimulation at the seizure focus as an adjunctive therapy to reduce the frequency of seizures in adults with medically intractable partial onset seizures arising from one or two seizure foci.MethodsRandomized multicenter double-blinded controlled trial of responsive focal cortical stimulation (RNS System). Subjects with medically intractable partial onset seizures from one or two foci were implanted, and 1 month postimplant were randomized 1:1 to active or sham stimulation. After the fifth postimplant month, all subjects received responsive stimulation in an open label period (OLP) to complete 2 years of postimplant follow-up.ResultsAll 191 subjects were randomized. The percent change in seizures at the end of the blinded period was −37.9% in the active and −17.3% in the sham stimulation group (p = 0.012, Generalized Estimating Equations). The median percent reduction in seizures in the OLP was 44% at 1 year and 53% at 2 years, which represents a progressive and significant improvement with time (p < 0.0001). The serious adverse event rate was not different between subjects receiving active and sham stimulation. Adverse events were consistent with the known risks of an implanted medical device, seizures, and of other epilepsy treatments. There were no adverse effects on neuropsychological function or mood.SignificanceResponsive stimulation to the seizure focus reduced the frequency of partial-onset seizures acutely, showed improving seizure reduction over time, was well tolerated, and was acceptably safe. The RNS System provides an additional treatment option for patients with medically intractable partial-onset seizures.
Objective:The long-term efficacy and safety of responsive direct neurostimulation was assessed in adults with medically refractory partial onset seizures.Methods:All participants were treated with a cranially implanted responsive neurostimulator that delivers stimulation to 1 or 2 seizure foci via chronically implanted electrodes when specific electrocorticographic patterns are detected (RNS System). Participants had completed a 2-year primarily open-label safety study (n = 65) or a 2-year randomized blinded controlled safety and efficacy study (n = 191); 230 participants transitioned into an ongoing 7-year study to assess safety and efficacy.Results:The average participant was 34 (±11.4) years old with epilepsy for 19.6 (±11.4) years. The median preimplant frequency of disabling partial or generalized tonic-clonic seizures was 10.2 seizures a month. The median percent seizure reduction in the randomized blinded controlled trial was 44% at 1 year and 53% at 2 years (p < 0.0001, generalized estimating equation) and ranged from 48% to 66% over postimplant years 3 through 6 in the long-term study. Improvements in quality of life were maintained (p < 0.05). The most common serious device-related adverse events over the mean 5.4 years of follow-up were implant site infection (9.0%) involving soft tissue and neurostimulator explantation (4.7%).Conclusions:The RNS System is the first direct brain responsive neurostimulator. Acute and sustained efficacy and safety were demonstrated in adults with medically refractory partial onset seizures arising from 1 or 2 foci over a mean follow-up of 5.4 years. This experience supports the RNS System as a treatment option for refractory partial seizures.Classification of evidence:This study provides Class IV evidence that for adults with medically refractory partial onset seizures, responsive direct cortical stimulation reduces seizures and improves quality of life over a mean follow-up of 5.4 years.
Ion channel mutations are an important cause of rare Mendelian disorders affecting brain, heart, and other tissues. We performed parallel exome sequencing of 237 channel genes in a well characterized human sample, comparing variant profiles of unaffected individuals to those with the most common neuronal excitability disorder, sporadic idiopathic epilepsy. Rare missense variation in known Mendelian disease genes is prevalent in both groups at similar complexity, revealing that even deleterious ion channel mutations confer uncertain risk to an individual depending on the other variants with which they are combined. Our findings indicate that variant discovery via large scale sequencing efforts is only a first step in illuminating the complex allelic architecture underlying personal disease risk. We propose that in silico modeling of channel variation in realistic cell and network models will be crucial to future strategies assessing mutation profile pathogenicity and drug response in individuals with a broad spectrum of excitability disorders.
We directly assessed mesial temporal activity in two Alzheimer’s disease (AD) patients without a history or EEG evidence of seizures, using intracranial foramen ovale electrodes. We detected clinically silent hippocampal seizures and epileptiform spikes during sleep, a period when both were most likely to interfere with memory consolidation. These index cases support a model in which early development of occult hippocampal hyperexcitability may contribute to the pathogenesis of AD.
Sudden unexplained death in epilepsy (SUDEP) is a catastrophic complication of human idiopathic epilepsy, with an estimated prevalence of up to 18%. A molecular mechanism and an identified therapy have remained elusive. Here we find that epilepsy occurs in mouse lines bearing dominant human LQT1 mutations for the most common form of cardiac long QT syndrome (LQTS), which causes syncopy and sudden death. KCNQ1 encodes the cardiac KCNQ1 (KvLQT1) delayed rectifier channel, which has not been previously localized to the brain. We have shown that it is expressed in forebrain neuronal networks and brainstem nuclei, regions in which a defect in the ability of neurons to repolarize after an action potential can produce seizures and dysregulate autonomic control of the heart. That LQTS mutations in this gene cause epilepsy reveals the dual arrhythmogenic potential of an ion channelopathy co-expressed in heart and brain, and motivates a search for genetic diagnostic strategies to improve risk prediction and prevention of early mortality in persons with seizure disorders of unknown origin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.