Sketching is a natural and intuitive communication tool used for expressing concepts or ideas which are difficult to communicate through text or speech alone. Sketching is therefore used for a variety of purposes, from the expression of ideas on two-dimensional (2D) physical media, to object creation, manipulation, or deformation in three-dimensional (3D) immersive environments. This variety in sketching activities brings about a range of technologies which, while having similar scope, namely that of recording and interpreting the sketch gesture to effect some interaction, adopt different interpretation approaches according to the environment in which the sketch is drawn. In fields such as product design, sketches are drawn at various stages of the design process, and therefore, designers would benefit from sketch interpretation technologies which support these differing interactions. However, research typically focuses on one aspect of sketch interpretation and modeling such that literature on available technologies is fragmented and dispersed. In this paper, we bring together the relevant literature describing technologies which can support the product design industry, namely technologies which support the interpretation of sketches drawn on 2D media, sketch-based search interactions, as well as sketch gestures drawn in 3D media. This paper, therefore, gives a holistic view of the algorithmic support that can be provided in the design process. In so doing, we highlight the research gaps and future research directions required to provide full sketch-based interaction support.
No abstract
Several machine learning-based COVID-19 classifiers exploiting vocal biomarkers of COVID-19 has been proposed recently as digital mass testing methods. Although these classifiers have shown strong performances on the datasets on which they are trained, their methodological adaptation to new datasets with different modalities has not been explored. We report on cross-running the modified version of recent COVID-19 Identification ResNet (CIdeR) on the two Interspeech 2021 COVID-19 diagnosis from cough and speech audio challenges: ComParE and DiCOVA. CIdeR is an end-to-end deep learning neural network originally designed to classify whether an individual is COVID-19-positive or COVID-19-negative based on coughing and breathing audio recordings from a published crowdsourced dataset. In the current study, we demonstrate the potential of CIdeR at binary COVID-19 diagnosis from both the COVID-19 Cough and Speech Sub-Challenges of INTERSPEECH 2021, ComParE and DiCOVA. CIdeR achieves significant improvements over several baselines. We also present the results of the cross dataset experiments with CIdeR that show the limitations of using the current COVID-19 datasets jointly to build a collective COVID-19 classifier.
We report on cross-running the recent COVID-19 Identification ResNet (CIdeR) on the two Interspeech 2021 COVID-19 diagnosis from cough and speech audio challenges: ComParE and DiCOVA. CIdeR is an end-to-end deep learning neural network originally designed to classify whether an individual is COVIDpositive or COVID-negative based on coughing and breathing audio recordings from a published crowdsourced dataset. In the current study, we demonstrate the potential of CIdeR at binary COVID-19 diagnosis from both the COVID-19 Cough and Speech Sub-Challenges of INTERSPEECH 2021, Com-ParE and DiCOVA. CIdeR achieves significant improvements over several baselines.
The COVID-19 pandemic has caused massive humanitarian and economic damage. Teams of scientists from a broad range of disciplines have searched for methods to help governments and communities combat the disease. One avenue from the machine learning field which has been explored is the prospect of a digital mass test which can detect COVID-19 from infected individuals’ respiratory sounds. We present a summary of the results from the INTERSPEECH 2021 Computational Paralinguistics Challenges: COVID-19 Cough, (CCS) and COVID-19 Speech, (CSS).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.