Previously, mapping of the 9p23-24 amplicon in esophageal cancer cell lines led us to the positional cloning of GASC1 (gene amplified in squamous cell carcinoma 1), which encodes a nuclear protein with a Jumonji C (JmjC) domain that catalyzes lysine (K) demethylation of histones. However, the transforming roles of GASC1 in breast cancer remain to be determined. In this study, we identified GASC1 as one of the amplified genes for the 9p23-24 region in breast cancer, particularly in basal-like subtypes. The levels of GASC1 transcript expression were significantly higher in aggressive, basal-like breast cancers compared with non basal-like breast cancers. Our in vitro assays demonstrated that GASC1 induces transformed phenotypes, including growth factor-independent proliferation, anchorage-independent growth, altered morphogenesis in Matrigel, and mammosphere forming ability, when over expressed in immortalized, nontransformed mammary epithelial MCF10A cells. Additionally, GASC1 demethylase activity regulates the expression of genes critical for stem cell self-renewal, including NOTCH1, and may be linked to the stem cell phenotypes in breast cancer. Thus, GASC1 is a driving oncogene in the 9p23-24 amplicon in human breast cancer and targeted inhibition of GASC1 histone demethylase in cancer could provide potential new avenues for therapeutic development.
Background Despite more aggressive screening across all demographics and gradual declines in mortality related to prostate cancer (PCa) in the United States, disparities among populations persist. A substantial proportion of African American men (AAM) have a higher overall incidence, earlier age of onset, increased proportion of clinically advanced disease, and increased bone metastases and mortality from PCa compared to European American men (EAM). Limited early evidence indicates that underlying causes for disparities may be observed in tumor-specific gene expression programs. Methods This study used microarray-based methods to measure expression levels for 517 genes that were previously associated with PCa in archived formalin-fixed paraffin embedded (FFPE) specimens; testing the hypothesis that gene expression features of functional consequence to cancer distinguish PCa from AAM and EAM. A t test was conducted comparing AAM to EAM expression levels for each probe on the array. Results Analysis of 639 tumor samples (270 AAM, 369 EAM) showed that 95 genes were overexpressed specifically in PCa from AAM relative to EAM and 132 were overexpressed in PCa from EAM relative to AAM. Furthermore, systems-level analyses highlight the relevant signaling pathways and functions associated with the EAM- or AAM-specific overexpressed gene sets, for example, inflammation and lipid metabolism. Conclusions Results here bring further understanding to the potential for molecular differences for PCa in AAM versus EAM. Impact The results support the notion that therapeutic benefits will be realized when targeted treatments are designed to acknowledge and address a greater spectrum of PCa subtypes and molecular distinctions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.