Calcium phosphate cements (CPCs) should ideally have mechanical properties similar to those of the bone tissue the material is used to replace or repair. Usually, the compressive strength of the CPCs is reported and, more rarely, the elastic modulus. Conversely, scarce or no data are available on Poisson's ratio and strain-to-crack-initiation. This is unfortunate, as data on the elastic response is key to, e.g., numerical model accuracy. In this study, the compressive behaviour of brushite, monetite and apatite cements was fully characterised. Measurement of the surface strains was done using a digital image correlation (DIC) technique, and compared to results obtained with the commonly used built-in displacement measurement of the materials testers. The collected data showed that the use of fixed compression platens, as opposed to spherically seated ones, may in some cases underestimate the compressive strength by up to 40%. Also, the built-in measurements may underestimate the elastic modulus by up to 62% as compared to DIC measurements. Using DIC, the brushite cement was found to be much stiffer (24.3 ± 2.3GPa) than the apatite (13.5 ± 1.6GPa) and monetite (7.1 ± 1.0GPa) cements, and elastic moduli were inversely related to the porosity of the materials. Poisson's ratio was determined to be 0.26 ± 0.02 for brushite, 0.21 ± 0.02 for apatite and 0.20 ± 0.03 for monetite. All investigated CPCs showed low strain-to-crack-initiation (0.17-0.19%). In summary, the elastic modulus of CPCs is substantially higher than previously reported and it is concluded that an accurate procedure is a prerequisite in order to properly compare the mechanical properties of different CPC formulations. It is recommended to use spherically seated platens and measuring the strain at a relevant resolution and on the specimen surface.
Measuring small-magnitude strain fields using a digital image correlation (DIC) technique is challenging, due to the noise-signal ratio in strain maps. Here, we determined the level of accuracy achievable in measuring small-magnitude (<0.1%) homogeneous strain fields. We investigated different sets of parameters for image processing and imaging pre-selection, based on single-image noise level. The trueness of DIC was assessed by comparison of Young’s modulus (E) and Poisson’s ratio (ν) with values obtained from strain gauge measurements. Repeatability was improved, on average, by 20–25% with experimentally-determined optimal parameters and image pre-selection. Despite this, the intra- and inter-specimen repeatability of strain gauge measurements was 5 and 2.5 times better than DIC, respectively. Moreover, although trueness was also improved, on average, by 30–45%, DIC consistently overestimated the two material parameters by 1.8% and 3.2% for E and ν, respectively. DIC is a suitable option to measure small-magnitude homogeneous strain fields, bearing in mind the limitations in achievable accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.