We present QADR17, a global model of Rayleigh-wave attenuation based on a massive surface wave data set (372 629 frequency-dependent attenuation curves in the period range 50-260 s). We correct for focusing-defocusing effects and geometrical spreading, and perform a stringent selection to only keep robust observations. Then, data with close epicentres recorded at the same station are clustered, as they sample the same Earth's structure. After this preselection, our data set consists of about 35 000 curves that constrain the Rayleigh-wave intrinsic attenuation in the upper mantle. The logarithms of the attenuation along the individual rays are then inverted to obtain global maps of the logarithm of the local attenuation. After a first inversion, outliers are rejected and a second inversion yields a variance reduction of about 45 per cent. Our attenuation maps present strong agreement with surface tectonics at periods lower than 200 s, with low attenuation under continents and high attenuation under oceans. Over oceans, attenuation decreases with increasing crustal ages, but at periods sensitive to the uppermost 150 km, mid-ocean ridges are not characterized by a very localized anomaly, in contrast to what is commonly observed for seismic velocity models. Attenuation is rather well correlated with hotspots, especially in the Pacific ocean, where a strong attenuating anomaly is observed in the long wavelength component of our signal at periods sampling the oceanic asthenosphere. We suggest that this anomaly results from the horizontal spreading of several thermal plumes within the asthenosphere. Strong velocity reductions associated with high attenuation anomalies of moderate amplitudes beneath the East Pacific Rise, the Red Sea and the eastern part of Asia may require additional mechanisms, such as partial melting.
We present QsADR17, a global shear wave attenuation model of the upper mantle. Synthetic tests confirm that large‐scale shear attenuation anomalies are resolved in the whole upper mantle with limited vertical smearing (≤50 km). QsADR17 shows strong correlation with surface tectonics down to 200 km depth, with low attenuation beneath continents and high attenuation beneath oceans. The attenuation signal near 250 km depth is dominated by a high‐quality factor along subduction zones. Attenuating anomalies are found beneath mid‐ocean ridges down to 150 km and under most Pacific hot spots from the lithosphere down to the transition zone. The presence of broad attenuating anomalies at 150 km depth in the Pacific Ocean suggests that several thermal plumes pond in the asthenosphere. Evidence for compositional heterogeneities is found in the lithosphere at the base of cratons and in a number of active regions.
Abstract. Sexist behaviour in the workplace contributes to create a hostile environment, hindering the chance of women and gender non-conforming individuals to pursue an academic career, but also reinforcing gender stereotypes that are harmful to their progress and recognition. The Did this really happen?! project aims at publishing real-life, everyday sexism in the form of comic strips. Its major goal is to raise awareness about unconscious biases that transpire in everyday interactions in academia and increase the visibility of sexist situations that arise within the scientific community, especially to those who might not notice it. Through the website didthisreallyhappen.net, we collect testimonies about everyday sexism occurring in the professional academic environment (universities, research institutes, scientific conferences…). We translate these stories into comics and publish them anonymously without any judgement or comments on the website. By now, we have collected over 100 testimonies. From this collection, we identified six recurrent patterns: (1) behaviours that aim at maintaining women in stereotypical feminine roles, (2) behaviours that aim at maintaining men in stereotypical masculine roles, (3) the questioning of the scientific skills of female researchers, (4) situations where women have the position of an outsider, especially in informal networking contexts, (5) the objectification of women, and (6) the expression of neosexist views. We first present a detailed analysis of these categories, then we report on the different ways we interact and engage with the Earth science community, the scientific community at large and the public in this project.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.