This study provides quantitative information on the aggregation and dissolution behaviour of silver nanoparticles (AgNPs) upon discharge in fresh and sea waters, represented here as NaCl solutions of increasing ionic strength (up to 1M) and natural fjord waters. Natural polysaccharides, sodium alginate (ALG) and gum Arabic (GA), were used as coatings to stabilize the AgNPs and the compounds acted as models to study AgNP aggregation kinetics. The DLVO theory was used to quantitatively describe the interactions between the AgNPs. The stability of AgNPs was established using UV-Visible spectrophotometry, including unique information collected during the first seconds of the aggregaton process. Alginate coating resulted in a moderate stabilization of AgNPs in terms of critical coagulation concentration (~82mM NaCl) and a low dissolution of <10% total Ag in NaCl solutions up to 1M. Gum Arabic coated AgNPs were more strongly stabilized, with ~7-30% size increase up to 77mM NaCl, but only when the silver ion content initially present in solution was low (<10% total Ag). The ALG and GA coated AgNPs showed a strongly enhanced stability in natural fjord waters (ca. 5h required to reduce the area of the surface plasmon resonance band (SPRB) by two fold) compared with NaCl at an equivalent ionic strength (1-2min period for a two fold SPRB reduction). This is ascribed to a stabilizing effect from dissolved organic matter present in natural fjord waters. Interestingly, for AgNP-GA solutions with 40% of total silver present as unreacted silver ions in the NP stock solution, fast aggregation kinetics were observed in NaCl solutions (SPRB area was reduced by ca. 50% within 40-150min), with even more rapid removal in fjord waters, attributed to the high amount of silver-chloride charged species, that interact with the NP coating and/or organic matter and reduce the NPs stabilization.
Climate change is a relevant threat on a global scale, leading to impacts on ecosystems and ocean biodiversity. A considerable fraction of marine life depends on sound. Marine mammals, in particular, exploit sound in all aspects of their life, including feeding and mating. This work explores the impact of climate change in sound propagation by computing the three‐dimensional global field of underwater sound speed. The computation was performed based on present conditions (2006–2016) and a “business‐as‐usual” future climate scenario (Representative Concentration Pathway 8.5), identifying two “acoustic hotspots” where larger sound speed variations are expected. Our results indicate that the identified acoustic hotspots will present substantial climate‐change‐induced sound speed variations toward the end of the century, potentially affecting the vital activities of species in the areas. Evidence is provided of the impact of such variation on underwater sound transmission. As an example of a species impacted by underwater transmission, we considered one marine mammal endangered species, the North Atlantic right whale (Eubalaena glacialis), in the northwestern Atlantic Ocean. To the best of our knowledge, this is the first global‐scale data set of climate‐induced sound speed changes expected under a future scenario. This study provides a starting point for policies oriented research to promote the conservation of marine ecosystems and, in particular, endangered marine mammals.
Policy makers require a knowledge-based support to identify effective interventions for the socio-economic sustainability of human activities at sea. When dealing with anthropogenic impacts on marine ecosystems, we deal with a complex and faceted system which has high variability in terms of environment, regulation, governance, industrial activities, and geo-political scenarios. We analyzed the conceptual scientific framework adopted to address underwater noise as a polluting component of the marine environment. We identified the scientific paths that can provide useful contributions towards comprehending the impacts on the native ecosystem. In order to furnish relevant clues towards the properties of the interconnection of signals, we briefly reviewed an example from a different discipline (helioseismology). We describe a new approach on how acoustic energy in the sea could be detected and analyzed to understand its role in the functioning of the ecosystem. We propose a change of perspective in the observation strategy of underwater noise, promoting a knowledge transfer from other disciplines, which in turn will enable a better understanding of the system. This will allow researchers and policy-makers to identify feasible and effective solutions to tackle the negative impacts of underwater noise and the conservation of the marine ecosystem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.