Key Points
Removal of αβ+ T and CD19+ B cells is an effective strategy for successful HLA-haploidentical hematopoietic stem cell transplantation. The high probability of disease-free survival renders this transplant option attractive for any child with a nonmalignant disorder.
Natural killer (NK) cells contribute to the first line of defense against viruses and to the control of tumor growth and metastasis spread. The discovery of HLA class I specific inhibitory receptors, primarily of killer Ig-like receptors (KIRs), and of activating receptors has been fundamental to unravel NK cell function and the molecular mechanisms of tumor cell killing. Stemmed from the seminal discoveries in early ‘90s, in which Alessandro Moretta was the major actor, an extraordinary amount of research on KIR specificity, genetics, polymorphism, and repertoire has followed. These basic notions on NK cells and their receptors have been successfully translated to clinical applications, primarily to the haploidentical hematopoietic stem cell transplantation to cure otherwise fatal leukemia in patients with no HLA compatible donors. The finding that NK cells may express the PD-1 inhibitory checkpoint, particularly in cancer patients, may allow understanding how anti-PD-1 therapy could function also in case of HLA class I
neg
tumors, usually susceptible to NK-mediated killing. This, together with the synergy of therapeutic anti-checkpoint monoclonal antibodies, including those directed against NKG2A or KIRs, emerging in recent or ongoing studies, opened new solid perspectives in cancer therapy.
Key Points• Children with AL given haplo-HSCT after ab T-and B-cell depletion are exposed to a low risk of acute and chronic GVHD and NRM.• The leukemia-free, GVHDfree survival of patients given this type of allograft is comparable to that of HLAmatched donor HSCT recipients.Allogeneic hematopoietic stem cell transplantation (HSCT) from an HLA-haploidentical relative (haplo-HSCT) is a suitable option for children with acute leukemia (AL) either relapsed or at high-risk of treatment failure. We developed a novel method of graft manipulation based on negative depletion of ab T and B cells and conducted a prospective trial evaluating the outcome of children with AL transplanted with this approach. Eighty AL children, transplanted between September 2011 and September 2014, were enrolled in the trial. All children were given a fully myeloablative preparative regimen. Anti-T-lymphocyte globulin from day 25 to 23 was used for preventing graft rejection and graft-versus-host disease (GVHD); no patient received any posttransplantation GVHD prophylaxis. Two children experienced primary graft failure. The cumulative incidence of skin-only, grade 1-2 acute GVHD was 30%; no patient developed extensive chronic GVHD. Four patients died, the cumulative incidence of nonrelapse mortality being 5%, whereas 19 relapsed, resulting in a 24% cumulative incidence of relapse. With a median follow-up of 46 months for surviving patients, the 5-year probability of chronic GVHD-free, relapsefree survival (GRFS) is 71%. Total body irradiation-containing preparative regimen was the only variable favorably influencing relapse incidence and GRFS. The outcomes of these 80 patients are comparable to those of 41 and 51 children given transplantation from an HLA-identical sibling or a 10/10 allelic-matched unrelated donor in the same period. These data indicate that haplo-HSCT after ab T-and B-cell depletion represents a competitive alternative for children with AL in need of urgent allograft. This trial was registered at www.clinicaltrials.gov as #NCT01810120. (Blood. 2017;130(5):677-685)
Key Points
Vδ1 and Vδ2 T cells promptly reconstitute in children given haploidentical stem cell transplantation depleted of αβ+ T and CD19+ B cells. Vδ1 cells are expanded in patients experiencing cytomegalovirus reactivation; ZOL potentiates Vδ2 killing against leukemia blasts.
SummaryMesenchymal stromal cell (MSC) infusions have been reported to be effective in patients with steroid-refractory, acute graft-versus-host disease (aGvHD) but comprehensive data on paediatric patients are limited. We retrospectively analysed a cohort of 37 children (aged 3 months-17 years) treated with MSCs for steroid-refractory grade III-IV aGvHD. All patients but three received multiple MSC infusions. Complete response (CR) was observed in 24 children (65%), while 13 children had either partial (n = 8) or no response (n = 5). Cumulative incidence of transplantation-related mortality (TRM) in patients who did or did not achieve CR was 17% and 69%, respectively (P = 0Á001). After a median follow-up of 2Á9 years, overall survival (OS) was 37%; it was 65% vs. 0% in patients who did or did not achieve CR, respectively (P = 0Á001). The median time from starting steroids for GvHD treatment to first MSC infusion was 13 d (range 5-85). Children treated between 5 and 12 d after steroid initiation showed a trend for better OS (56%) and lower TRM (17%) as compared with patients receiving MSCs 13-85 d after steroids (25% and 53%, respectively; P = 0Á22 and 0Á06, respectively). Multiple MSC infusions are safe and effective for children with steroid-refractory aGvHD, especially when employed early in the disease course.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.