Endoplasmic reticulum (ER) stress may be both a trigger and consequence of chronic inflammation. Chronic inflammation is often associated with diseases that arise because of primary misfolding mutations and ER stress. Similarly, ER stress and activation of the unfolded protein response (UPR) is a feature of many chronic inflammatory and autoimmune diseases. In this review, we describe how protein misfolding and the UPR trigger inflammation, how environmental ER stressors affect antigen presenting cells and immune effector cells, and present evidence that inflammatory factors exacerbate protein misfolding and ER stress. Examples from both animal models of disease and human diseases are used to illustrate the complex interactions between ER stress and inflammation, and opportunities for therapeutic targeting are discussed. Finally, recommendations are made for future research with respect to the interaction of ER stress and inflammation.
Oxidative stress and endoplasmic reticulum (ER) stress are related states that can occur in cells as part of normal physiology but occur frequently in diseases involving inflammation. In this article, we review recent findings relating to the role of oxidative and ER stress in the pathophysiology of acute and chronic nonmalignant diseases of the lung, including infections, cystic fibrosis, idiopathic pulmonary fibrosis and asthma. We also explore the potential of drugs targeting oxidative and ER stress pathways to alleviate disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.