We present a "practical" algorithm to construct random elements of a finite group. We analyse its theoretical behaviour and prove that asymptotically it produces uniformly distributed tuples of elements. We discuss tests to assess its effectiveness and use these to decide when its results are acceptable for some matrix groups.
Abstract. We present a Las Vegas algorithm which, for a given black-box group known to be isomorphic to a symmetric or alternating group, produces an explicit isomorphism with the standard permutation representation of the group. This algorithm has applications in computations with matrix groups and permutation groups.In this paper, we handle the case when the degree n of the standard permutation representation is part of the input. In a sequel, we shall treat the case when the value of n is not known in advance.As an important ingredient in the theoretical basis for the algorithm, we prove the following result about the orders of elements of Sn: the conditional probability that a random element σ ∈ Sn is an n-cycle, given that σ n = 1, is at least 1/10.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.