B-precursor acute lymphoblastic leukemia (B-pre ALL) is a malignant disorder characterized by the abnormal proliferation of B-cell progenitors. The prognosis of B-pre ALL has improved in pediatric patients, but the outcome is much less successful in adults. Constitutive activation of the phosphatidylinositol 3-kinase (PI3K), Akt and the mammalian target of rapamycin (mTOR) (PI3K/Akt/ mTOR) network is a feature of B-pre ALL, where it strongly influences cell growth and survival. RAD001, a selective mTORC1 inhibitor, has been shown to be cytotoxic against many types of cancer including hematological malignancies. To investigate whether mTORC1 could represent a target in the therapy of B-pre ALL, we treated cell lines and adult patient primary cells with RAD001. We documented that RAD001 decreased cell viability, induced cell cycle arrest in G 0 /G 1 phase and caused apoptosis in B-pre ALL cell lines. Autophagy was also induced, which was important for the RAD001 cytotoxic effect, as downregulation of Beclin-1 reduced drug cytotoxicity. RAD001 strongly synergized with the novel allosteric Akt inhibitor MK-2206 in both cell lines and patient samples. Similar results were obtained with the combination CCI-779 plus GSK 690693. These findings point out that mTORC1 inhibitors, either as a single agent or in combination with Akt inhibitors, could represent a potential therapeutic innovative strategy in B-pre ALL.
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide. Prognosis is poor, and therapeutic options are limited. MicroRNAs (miRNAs) have emerged as potential therapeutic molecules against cancer. Here, we investigated the therapeutic efficacy of miR-199a-3p, an miRNA highly expressed in normal liver and downregulated in virtually all HCCs. The therapeutic value of miR-199a-3p mimic molecules was assayed in the TG221 mouse, a transgenic model highly predisposed to the development of liver cancer. Administration of miR-199a-3p mimics in the TG221 transgenic mouse showing liver cancer led to a significant reduction of number and size of tumor nodules compared to control animals. In vivo delivery confirmed protein downregulation of the miR-199a-3p direct targets, mechanistic target of rapamycin (MTOR) and p21 activated kinase 4 (PAK4), ultimately leading to the repression of FOXM1. Remarkably, the anti-tumor activity of miR-199a-3p mimics was comparable to that obtained with sorafenib. These results suggested that miR-199a-3p may be considered a promising HCC therapeutic option.
Bone marrow (BM) microenvironment contributes to the regulation of normal hematopoiesis through a finely tuned balance of self-renewal and differentiation processes, cell-cell interaction and secretion of cytokines that during leukemogenesis are altered and favor tumor cell growth. In pediatric acute myeloid leukemia (AML), chemotherapy is the standard of care, but still >30% of patients relapse. The need to accelerate the evaluation of innovative medicines prompted us to investigate the mesenchymal stromal cells (MSCs) role in the leukemic niche to define its contribution to the mechanisms of leukemia escape. We generated humanized three-dimensional (3D) niche with AML cells and MSCs derived from either patients (AML-MSCs) or healthy donors. We observed that AML cells establish physical connections with MSCs, mediating a reprogrammed transcriptome inducing aberrant cell proliferation and differentiation, and severely compromising their immunomodulatory capability. We confirmed that AML cells modulate h-MSCs transcriptional profile promoting functions similar to the AML-MSCs when co-cultured in vitro, thus facilitating leukemia progression. Conversely, MSCs derived from BM of patients at time of disease remission showed recovered healthy features, at transcriptional and functional levels, including the secretome. We proved that AML blasts alter MSCs activities in the BM niche, favoring disease development and progression. We discovered that a novel AML-MSCs selective CaV1.2 channel blocker drug, Lercanidipine, is able to impair leukemia progression in 3D niche both in vitro and when implanted in vivo, if used in combination with chemotherapy, supporting the hypothesis that synergistic effects can be obtained by dual targeting approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.