BACKGROUND & AIMS: Given that gastrointestinal (GI) symptoms are a prominent extrapulmonary manifestation of COVID-19, we investigated intestinal infection with SARS-CoV-2, its effect on pathogenesis, and clinical significance. METHODS: Human intestinal biopsy tissues were obtained from patients with COVID-19 (n ¼ 19) and uninfected control individuals (n ¼ 10) for microscopic examination, cytometry by time of flight analyses, and RNA sequencing. Additionally, disease severity and mortality were examined in patients with and without GI symptoms in 2 large, independent cohorts of hospitalized patients in the United States (N ¼ 634) and Europe (N ¼ 287) using multivariate logistic regressions. RESULTS: COVID-19 case patients and control individuals in the biopsy cohort were comparable for age, sex, rates of hospitalization, and relevant comorbid conditions. SARS-CoV-2 was detected in small intestinal epithelial cells by immunofluorescence staining or electron microscopy in 15 of 17 patients studied. Highdimensional analyses of GI tissues showed low levels of inflammation, including down-regulation of key inflammatory genes including IFNG, CXCL8, CXCL2, and IL1B and reduced frequencies of proinflammatory dendritic cells compared with control individuals. Consistent with these findings, we found a significant reduction in disease severity and mortality in patients presenting with GI symptoms that was independent of sex, age, and comorbid illnesses and despite similar nasopharyngeal SARS-CoV-2 viral loads. Furthermore, there was reduced levels of key inflammatory proteins in circulation in patients with GI symptoms. CONCLUSIONS: These data highlight the absence of a proinflammatory response in the GI tract despite detection of SARS-CoV-2. In parallel, reduced mortality in patients with COVID-19 presenting with GI symptoms was observed. A potential role of the GI tract in
Fecal microbiota transplantation (FMT) has been successfully applied to treat recurrent Clostridium difficile infection in humans, but a precise method to measure which bacterial strains stably engraft in recipients and evaluate their association with clinical outcomes is lacking. We assembled a collection of >1,000 different bacterial strains that were cultured from the fecal samples of 22 FMT donors and recipients. Using our strain collection combined with metagenomic sequencing data from the same samples, we developed a statistical approach named Strainer for the detection and tracking of bacterial strains from metagenomic sequencing data. We applied Strainer to evaluate a cohort of 13 FMT longitudinal clinical interventions and detected stable engraftment of 71% of donor microbiota strains in recipients up to 5 years post-FMT. We found that 80% of recipient gut bacterial strains pre-FMT were eliminated by FMT and that post-FMT the strains present persisted up to 5 years later, together with environmentally acquired strains. Quantification of donor bacterial strain engraftment in recipients independently explained (precision 100%, recall 95%) the clinical outcomes (relapse or success) after initial and repeat FMT. We report a compendium of bacterial species and strains that consistently engraft in recipients over time that could be used in defined live biotherapeutic products as an alternative to FMT. Our analytical framework and Strainer can be applied to systematically evaluate either FMT or defined live bacterial therapeutic studies by quantification of strain engraftment in recipients.
Given that gastrointestinal (GI) symptoms are a prominent extrapulmonary manifestation of coronavirus disease 2019 (COVID-19), we investigated the impact of GI infection on disease pathogenesis in three large cohorts of patients in the United States and Europe. Unexpectedly, we observed that GI involvement was associated with a significant reduction in disease severity and mortality, with an accompanying reduction in key inflammatory proteins including IL-6, CXCL8, IL-17A and CCL28 in circulation. In a fourth cohort of COVID-19 patients in which GI biopsies were obtained, we identified severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) within small intestinal enterocytes for the first time in vivo but failed to obtain culturable virus. High dimensional analyses of GI tissues confirmed low levels of cellular inflammation in the GI lamina propria and an active downregulation of key inflammatory genes including IFNG, CXCL8, CXCL2 and IL1B among others. These data draw attention to organ-level heterogeneity in disease pathogenesis and highlight the role of the GI tract in attenuating SARS-CoV-2-associated inflammation with related mortality benefit.
Gastrointestinal symptoms are common in COVID-19 patients but the nature of the gut immune response to SARS-CoV-2 remains poorly characterized, partly due to the difficulty of obtaining biopsy specimens from infected individuals. In lieu of tissue samples, we measured cytokines, inflammatory markers, viral RNA, microbiome composition, and antibody responses in stool samples from a cohort of 44 hospitalized COVID-19 patients. SARS-CoV-2 RNA was detected in stool of 41% of patients and more frequently in patients with diarrhea. Patients who survived had lower fecal viral RNA than those who died. Strains isolated from stool and nasopharynx of an individual were the same. Compared to uninfected controls, COVID-19 patients had higher fecal levels of IL-8 and lower levels of fecal IL-10. Stool IL-23 was higher in patients with more severe COVID-19 disease, and we found evidence of intestinal virus-specific IgA responses associated with more severe disease. We provide evidence for an ongoing humeral immune response to SARS-CoV-2 in the gastrointestinal tract, but little evidence of overt inflammation.
Background and aims: Immune dysregulation caused by SARS-CoV-2 infection is thought to play a pathogenic role in COVID-19. SARS-CoV-2 can infect a variety of host cells, including intestinal epithelial cells. We sought to characterize the role of the gastrointestinal immune system in the pathogenesis of the inflammatory response associated with COVID-19. Methods: We measured cytokines, inflammatory markers, viral RNA, microbiome composition and antibody responses in stool and serum samples from a prospectively enrolled cohort of 44 hospitalized COVID-19 patients. Results: SARS-CoV-2 RNA was detected in stool of 41% of patients and was found more frequently in patients with diarrhea than those without (16[44%] vs 5[19%], p=0.06). Patients who survived had lower median viral genome copies than those who did not (p=0.021). Compared to uninfected controls, COVID-19 patients had higher median fecal levels of IL-8 (166.5 vs 286.5 pg/mg; p=0.05) and lower levels of fecal IL-10 (678 vs 194 pg/mg; p<0.001) compared to uninfected controls. Stool IL-23 was higher in patients with more severe COVID-19 disease (223.8 vs 86.6 pg/mg; p=0.03) and we find evidence of intestinal virus-specific IgA responses, which was associated with more severe disease. Fecal cytokines and calprotectin levels were not correlated with gastrointestinal symptoms or with the level of virus detected. Conclusions: Although SARS-CoV-2 RNA was detectable in the stools of COVID-19 patients and select individuals had evidence for a specific mucosal IgA response, intestinal inflammation was limited, even in patients presenting with gastrointestinal symptoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.